Study Guide and Review

State whether each sentence is true orfalse. Iffalse, replace the underlined word or phrase to make a true sentence.

1. Any segment with both endpoints on the circle is a radius of the circle.

SOLUTION:
false; chord
ANSWER:
false; chord
2. A chord passing through the center of a circle is a diameter.

SOLUTION:
true
ANSWER:
true
3. A central angle has the center as its vertex and its sides contain two radii of the circle.

SOLUTION:

true
ANSWER:
true
4. An arc with a measure of less than 180° is a major arc.

SOLUTION:
false; minor arc
ANSWER:
false; minor arc
5. An intercepted arc is an arc that has its endpoints on the sides of an inscribed angle and lies in the interior of the inscribed angle.

SOLUTION:
true
ANSWER:
true
6. A common tangent is the point at which a line in the same plane as a circle intersects the circle.

SOLUTION:
false; point of tangency
ANSWER:
false; point of tangency

Study Guide and Review

7. A secant is a line that intersects a circle in exactly one point.

SOLUTION:

false; two
ANSWER:
false; two
8. A secant segment is a segment of a diameter that has exactly one endpoint on the circle.

SOLUTION:

false; secant line
ANSWER:
false; secant line
9. Two circles are concentric circles if and only if they have congruent radii.

SOLUTION:

false; congruent
ANSWER:
false; congruent

For Exercises 10-12, refer to $\odot D$.

10. Name the circle.

SOLUTION:

The center of the circle is D. So, the name of the circle is $\odot D$.
ANSWER:
$\odot D$
11. Name a radius.

SOLUTION:
A radius is a segment with endpoints at the center and on the circle. Here, $\overline{D M}$ or $\overline{D P}$ are radii.
ANSWER:
$\overline{D M}$ or $\overline{D P}$
12. Name a chord that is not a diameter

SOLUTION:

A chord is a segment with endpoints on the circle. A diameter of a circle is a chord that passes through the center. Here, $\overline{L N}$ is a chord which is not a diameter.

ANSWER:
$\overline{L N}$
Find the diameter and radius of a circle with the given circumference. Round to the nearest hundredth.
13. $C=43 \mathrm{~cm}$

SOLUTION:
$C=\pi d \quad$ Circumference Formula
$43=\pi d \quad$ Substitution
$\frac{43}{\pi}=d \quad$ Divide each sideby π.
$13.69 \approx d$ Use a calculator.
So, the diameter of the circle is about 13.69 centimeters.
The radius is half the diameter. So, the radius of the circle is about 6.84 cm .
ANSWER:
$13.69 \mathrm{~cm} ; 6.84 \mathrm{~cm}$
14. $C=26.7 \mathrm{yd}$

SOLUTION:

$C=\pi d \quad$ Circumference Formula
$26.7=\pi d \quad$ Substitution
$\frac{26.7}{\pi}=d \quad$ Divide each side by π.
$8.50 \approx d$ Use a calculator.
Therefore, the diameter is about 8.50 yards.
The radius is half the diameter. So, the radius of the circle is $\frac{1}{2}(8.50)$ or about 4.25 yards.
ANSWER:
$8.50 \mathrm{yd} ; 4.25 \mathrm{yd}$

Study Guide and Review

15. $C=108.5 \mathrm{ft}$

SOLUTION:
$C=\pi d \quad$ Circumference Formula
$108.5=\pi d \quad$ Substitution
$\frac{108.5}{\pi}=d \quad$ Divide each side by π.
$34.54 \approx d$ Use a calculator.
So, the diameter of the circle is about 34.54 feet.
The radius is half the diameter. So, the radius of the circle is $\frac{1}{2}$ (34.54) or about 17.27 feet.

ANSWER:
$34.54 \mathrm{ft} ; 17.27 \mathrm{ft}$
16. $C=225.9 \mathrm{~mm}$

SOLUTION:
$C=\pi d \quad$ Circumference Formula
$225.9=\pi d \quad$ Substitution
$\frac{225.9}{\pi}=d \quad$ Divide each side by π.
$71.91 \approx d \quad$ Use a calculator.
So, the diameter of the circle is about 71.91 millimeters.
The radius is half the diameter. So, the radius of the circle is $\frac{1}{2}(71.91)$ or about 35.95 millimeters.
ANSWER:
$71.91 \mathrm{~mm} ; 35.95 \mathrm{~mm}$

Find the value of x.

17.

SOLUTION:
The sum of the measures of the central angles of a circle with no interior points in common is 360 . $65+132+x=360$ Sum of Central Angles

$$
\begin{array}{rll}
197+x & =360 & \text { Simplify. } \\
x & =163 & \text { Subtract } 197 \text { from each side. }
\end{array}
$$

ANSWER:
163

Study Guide and Review

18.

SOLUTION:

The sum of the measures of the central angles of a circle with no interior points in common is 360 . $90+30+110+x=360$ Sum of Central Angles

$$
\begin{aligned}
230+x & =360 & & \text { Simplify } \\
x & =130 & & \text { Subtract } 230 \text { from each side. }
\end{aligned}
$$

ANSWER:
130

Study Guide and Review

19. MOVIES The pie chart below represents the results of a survey taken by Mrs. Jameson regarding her students’ favorite types of movies. Find each measure.
Mrs. Jameson's Students' Favorite Types of Movies

a. $m \overparen{A E}$
b. $m \overparen{B C}$
c. Describe the type of arc that the category Adventure represents.

SOLUTION:

$$
\begin{aligned}
\mathbf{a .} \text { arc } A E) & =28 \% \text { of } 360 \\
& =0.28(360) \\
& =100.8
\end{aligned}
$$

b.

$$
\begin{aligned}
m(\operatorname{arc} B C) & =5 \% \text { of } 360 \\
& =0.05(360) \\
& =18
\end{aligned}
$$

c. Adventure would have a measure of 40% of 360 or 144 , so it is a minor arc.

ANSWER:
a. 100.8
b. 18
c. minor arc

Study Guide and Review

Find the value of x.
20.

SOLUTION:

In the same circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

$$
\begin{aligned}
3 x+7 & =5 x-9 & & \text { Equal arcs cut equal chords } \\
16 & =2 x & & \text { Add }-3 x \text { and } 9 \text { to each side. } \\
8 & =x & & \text { Divide each side by } 2 .
\end{aligned}
$$

ANSWER:
8

In $\odot K, M N=16$ and $m \overline{M N}=\mathbf{9 8}$. Find each measure. Round to the nearest hundredth.

21. $m \overparen{N J}$

SOLUTION:

Since $\overline{L J}$ is a diameter and $\overline{L J} \perp \overline{M N}$, then arc $L N J$ is a semicircle and $\overline{L J}$ bisects $\operatorname{arc} M N$. So, $m(\operatorname{arc} L N)=\frac{1}{2} m$ ($\operatorname{arc} M N$) or 49 .

$$
\begin{aligned}
m(\operatorname{arc} L N)+m(\operatorname{arc} N J) & =m(\operatorname{arc} L N J) & & \text { ArcAddition Postulate } \\
49+m(\operatorname{arc} N J) & =180 & & m(\operatorname{arc} L N)=49, m(\operatorname{arc} L N J)=180 \\
m(\operatorname{arc} N J) & =131 & & \text { Subtract 49 from each side. }
\end{aligned}
$$

ANSWER:
131

Study Guide and Review

22. $L N$

SOLUTION:

Draw $\overline{K N}$ to complete right triangle $K P N$.

$K J=K L=K N=10$ (all radii are equal)
$P N=\frac{1}{2}(16)$ or 8 (a diameter drawn perpendicular to a chord bisects the chord)
Use the Pythagorean Theorem to find $K P$.

$$
\begin{aligned}
K P^{2}+P N^{2} & =K N^{2} & & \text { Pythagorean Theorem } \\
K P^{2}+8^{2} & =10^{2} & & \text { Substitution } \\
K P^{2} & =36 & & \text { Simplify. } \\
K P & =6 & & \text { Take the positive square root of each side. }
\end{aligned}
$$

Use the Segment Addition Postulate to find $P L$.
$K P+P L=K L \quad$ Segment Addition Postulate

$$
6+P L=10 \quad K P=6, K L=10
$$

$$
P L=4 \quad \text { Subtract } 6 \text { from each side. }
$$

Use right triangle $L P N$ and the Pythagorean Theorem to find $L N$.
$L N^{2}=P L^{2}+P N^{2}$ Pythagorean Theorem
$L N^{2}=4^{2}+8^{2} \quad P L=4, P N=8$
$L N^{2}=80 \quad$ Simplify .
$L N \approx 8.94 \quad$ Take the positivesquareroot of each side.
So, $L N$ is about 8.94.
ANSWER:
8.94

Study Guide and Review

23. GARDENING The top of the trellis shown is an arc of a circle in which $\overline{C D}$ is part of the diameter and $\overline{C D} \perp \overline{A B}$. If $\widehat{A C B}$ is about 28% of a complete circle, what is $m \overline{C B}$?

SOLUTION:

Use a percent of a number problem to find $m(\operatorname{arc} A C B)$.
$m(\operatorname{arc} A C B)=28 \%$ of 360 Original problem in equation form
$=0.28(360) \quad$ Changepercent to a decimal.
$=100.8 \quad$ Multiply.
$\overline{C D}$ bisects $\operatorname{arc} A C B$ since $\overline{C D}$ is part of the diameter and $\overline{C D}$ is perpendicular to $\overline{A B}$.

$$
\begin{aligned}
m(\operatorname{arc} C D) & =\frac{1}{2} m(\operatorname{arc} A C B) \\
& =\frac{1}{2}(100.8) \\
& =50.4
\end{aligned}
$$

ANSWER:
50.4

Find each measure.

24. $m \angle 1$

SOLUTION:

An inscribed angle equals one half the measure of its intercepted arc.

$$
\begin{aligned}
m \angle 1 & =\frac{1}{2}[218] & & \text { Theorem } 10.6 \\
& =109 & & \text { Multiply }
\end{aligned}
$$

ANSWER:
109

Study Guide and Review

25. $m \overline{G H}$

SOLUTION:

An inscribed angle equals one half the measure of its intercepted arc.

$$
\begin{array}{rll}
28 & =\frac{1}{2} m(\operatorname{arc} G H) & \text { Theorem } 10.6 \\
56 & =m(\operatorname{arc} G H) & \\
\text { Multiply each side by } 2
\end{array}
$$

ANSWER:
56
26. MARKETING In the logo,
$m \angle 1=42$. Find $m \angle 5$.

SOLUTION:

By Theorem 10.7, the measures of two inscribed angles of a circle that intercept the same arc or congruent arcs are congruent. So, since $\angle 1$ and $\angle 5$ intercept the same arc on this circle, $m \angle 5=m \angle 1$.
Therefore, $m \angle 5=42$.
ANSWER:
42
27. SCIENCE FICTION In a story Todd is writing, instantaneous travel between a two-dimensional planet and its moon is possible when the time-traveler follows a tangent. Copy the figures below and draw all possible travel paths.

SOLUTION:

There are four common tangent lines that can be drawn for the two circles representing the planet and its moon.

ANSWER:

Study Guide and Review

28. Find x and y. Assume that segments that appear to be tangent are tangent. Round to the nearest tenth if necessary.

SOLUTION:

Tangent segments drawn from the same exterior point are congruent.

$$
\begin{aligned}
5 x-8 & =72-3 x & & \text { Theorem } 10.11 \\
8 x & =80 & & \text { Add } 8 \text { and } 3 x \text { to each side. } \\
x & =10 & & \text { Div ide each sideby } 8 .
\end{aligned}
$$

Since y is a radius, it is perpendicular to the tangent. Use the right triangle formed and the Pythagorean Theorem to find the value of y.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { Pythagorean Theorem } \\
y^{2}+39^{2} & =41^{2} & & \text { Substitution } \\
y^{2} & =160 & & \text { Simplify. } \\
y & \approx 12.6 & & \text { Take thepositive squareroot of each side. }
\end{aligned}
$$

ANSWER:

$x=10, y=12.6$
Find each measure. Assume that segments that appear to be tangent are tangent.
29. $m \angle 1$

SOLUTION:

$$
\begin{aligned}
m \angle 1 & =\frac{1}{2}[86+108] & & \text { Theorem10.12 } \\
& =\frac{1}{2}[194] & & \text { Simplify } \\
& =97 & & \text { Multiply } .
\end{aligned}
$$

ANSWER:
97
30. $m \overparen{A C}$

SOLUTION:

$$
\begin{aligned}
82 & =\frac{1}{2}[220-m(\operatorname{arc} A C)] & & \text { Theorem } 10.14 \\
164 & =220-m(\operatorname{arc} A C) & & \text { Multiply each sideby } 2 . \\
m(\operatorname{arc} A C) & =56 & & \text { Add } m(\operatorname{arc} A C) \text { and }-164 \text { to each side. }
\end{aligned}
$$

ANSWER:
56
31. PHOTOGRAPHY Ahmed needs to take a close-up shot of an orange for his art class. He frames a shot of an orange as shown below, so that the lines of sight form tangents to the orange. If the measure of the camera's viewing angle is 34°, what is $m \overparen{A C B}$?

SOLUTION:

Major arc $A C B$ shares the same endpoints as minor arc $A B$, so $m(\operatorname{arc} A C B)=360-m(\operatorname{arc} A B)$.

$$
\begin{array}{rlrl}
34 & =\frac{1}{2}[m(\operatorname{arc} A C B)-m(\operatorname{arc} A B)] & & \text { Theorem } 10.14 \\
34 & =\frac{1}{2}[360-m(\operatorname{arc} A B)-m(\operatorname{arc} A B)] & & \text { Substitution } \\
68 & =360-2 m(\operatorname{arc} A B) & & \text { Simplify and multiply each side by } 2 . \\
-292 & =-2 m(\operatorname{arc} A B) & & \text { Subtract } 360 \text { from each side. } \\
146 & =m(\operatorname{arc} A B) & & \text { Divide each sideby }-2 . \\
\text { Therefore, } m(\operatorname{arc} A C B)=360-146 \text { or } 214 . & &
\end{array}
$$

ANSWER:

214

Study Guide and Review

Find x. Assume that segments that appear to be tangent are tangent.
32.

SOLUTION:

$$
\begin{aligned}
2 \cdot x & =6 \cdot 3 & & \text { Theorem10.15 } \\
2 x & =18 & & \text { Multiply. } \\
x & =9 & & \text { Divide each sideby } 2 .
\end{aligned}
$$

ANSWER:

9
33.

SOLUTION:

$$
\begin{aligned}
x(12 x+2) & =10 x(x+1) & & \text { Theorem } 10.15 \\
12 x^{2}+2 x & =10 x^{2}+10 x & & \text { Multiply. } \\
2 x^{2}-8 x & =0 & & \text { Subtract } 10 x^{2} \text { and } 10 x \text { from each side. } \\
2 x(x-4) & =0 & & \text { Factor. } \\
x & =0,4 & & \text { Zero Product Property }
\end{aligned}
$$

The length of a segment must be a positive number, so $x=4$.
ANSWER:
4
34. ARCHAEOLOGY While digging a hole to plant a tree, Henry found a piece of a broken saucer. What was the circumference of the original saucer? Round to the nearest hundredth.

SOLUTION:

Complete the circle represented by the plate and since the 0.75 inch segment is perpendicular to and bisects the chord, it will be a diameter.

Use the intersecting chords to find the radius of the circle. Let r be the radius of the circle. The length of the diameter is twice the radius, or $2 r$. The length of the longer segment for the diameter is given by $2 r-0.75$.

$$
\begin{aligned}
0.75(2 r-0.75) & =2(2) & & \text { Theorem } 10.15 \\
1.5 r-0.5625 & =4 & & \text { Multiply } \\
1.5 r & =4.5625 & & \text { Add } 0.5625 \text { to each side } . \\
r & \approx 3.04 & & \text { Divide each side by } 1.5 .
\end{aligned}
$$

Use the radius to find the circumference.
$C=2 \pi r \quad$ Circumference Formula
$=2 \pi(3.04)$ Substitution
≈ 19.1 Use a calculator.
Therefore, the circumference of the original saucer was about 19.1 inches.
ANSWER:
19.1 in.

Write the equation of each circle.

35 . center at $(-2,4)$, radius 5
SOLUTION:

$$
\begin{aligned}
(x-h)^{2}+(y-k)^{2} & =r^{2} & & \text { Equation of a circle } \\
(x-(-2))^{2}+(y-4)^{2} & =5^{2} & & (h, k)=(-2,4), r=5 \\
(x+2)^{2}+(y-4)^{2} & =25 & & \text { Simplify. }
\end{aligned}
$$

ANSWER:
$(x+2)^{2}+(y-4)^{2}=25$
36. center at $(1,2)$, diameter 14

SOLUTION:

If the diameter is 14 , then the radius is $\frac{1}{2}(14)$ or 7 .

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \quad \text { Equation of a circle } \\
& (x-1)^{2}+(y-2)^{2}=7^{2} \quad(h, k)=(1,2), r=7 \\
& (x-1)^{2}+(y-2)^{2}=49 \quad \text { Simplify } .
\end{aligned}
$$

ANSWER:
$(x-1)^{2}+(y-2)^{2}=49$
37. FIREWOOD In an outdoor training course, Kat learns a wood-chopping safety check that involves making a circle with her arm extended, to ensure she will not hit anything overhead as she chops. If her reach is 19 inches, the hatchet handle is 15 inches, and her shoulder is located at the origin, what is the equation of Kat's safety circle?

SOLUTION:

The radius of Kat's safety circle is $19+15$ or 34 inches. Write an equation using $h=0, k=0$, and $r=34$.

$$
\begin{aligned}
(x-h)^{2}+(y-k)^{2} & =r^{2} & & \text { Equation of a circle } \\
(x-0)^{2}+(y-0)^{2} & =34^{2} & & h=0, k=0, r=34 \\
x^{2}+y^{2} & =1156 & & \text { Simplify } .
\end{aligned}
$$

ANSWER:

$x^{2}+y^{2}=1156$

