Find the geometric mean between each pair of numbers.

 $1.\ 7 \ and \ 11$

SOLUTION:

By the definition, the geometric mean x of any two numbers a and b is given by $x = \sqrt{ab}$. Therefore, the geometric mean of 7 and 11 is

$$\sqrt{(7)(11)} = \sqrt{77} \approx 8.8.$$

ANSWER:

 $\sqrt{77} \approx 8.8$

2.12 and 9

SOLUTION:

By the definition, the geometric mean x of any two numbers a and b is given by $x = \sqrt{ab}$. Therefore, the geometric mean of 12 and 9 is

 $\sqrt{(12)(9)} = 6\sqrt{3} \approx 10.4.$

ANSWER:

6√3≈10.4

3. 14 and 21

SOLUTION:

By the definition, the geometric mean x of any two numbers a and b is given by $x = \sqrt{ab}$. Therefore, the geometric mean of 14 and 21 is

 $\sqrt{(14)(21)} = 7\sqrt{6} \approx 17.1.$

ANSWER:

 $7\sqrt{6} \approx 17.1$

4. $4\sqrt{3}$ and $10\sqrt{3}$

SOLUTION:

By the definition, the geometric mean x of any two numbers a and b is given by $x = \sqrt{ab}$. Therefore, the geometric mean of $4\sqrt{3}$ and $10\sqrt{3}$ is

$$\sqrt{\left(4\sqrt{3}\right)\left(10\sqrt{3}\right)} = 2\sqrt{30} \approx 11.$$

ANSWER:

2√30 ≈ 11.0

By the Geometric Mean (Leg) Theorem the altitude drawn to the hypotenuse of a right triangle separates the hypotenuse into two segments. The length of a leg of this triangle is the geometric mean between the length of the hypotenuse and the segment of the hypotenuse adjacent to that leg.

hy potenuse	hy potentise	hy potenuse	hy pote	enuse
longer leg	longer leg	shorter leg	shorte	r leg

Set up a proportion and solve for *z* and *y*:

$$\frac{13}{z} = \frac{z}{9} \quad \text{and} \quad \frac{13}{y} = \frac{y}{4}$$
$$z^2 = 117 \qquad y^2 = 52$$
$$z = \sqrt{117} \quad \text{and} \quad y = \sqrt{52}$$
$$= 3\sqrt{13} \qquad = 2\sqrt{13}$$

By the Geometric Mean (Altitude) Theorem the altitude drawn to the hypotenuse of a right triangle separates the hypotenuse into two segments. The length of this altitude is the geometric mean between the lengths of these two segments.

Solve for *x*

 $\frac{9}{x} = \frac{x}{4}$ $x^2 = 36$ x = 6

ANSWER: $x = 6, y = 2\sqrt{13}, z = 3\sqrt{13}$

6. **FAIRS** Blake is setting up his tent at a renaissance fair. If the tent is 8 feet tall, and the tether can be staked no more than two feet from the tent, how long should the tether be?

SOLUTION: Use the Pythagorean Theorem to find *x*.

$$2^{2} + 8^{2} = x^{2}$$

$$4 + 64 = x^{2}$$

$$68 = x^{2}$$

$$\sqrt{68} = x$$

$$x = 2\sqrt{17} \approx 8.2 ft$$

ANSWER:

8.2 ft

Use a calculator to find the measure of $\angle R$ to the nearest tenth.

SOLUTION:

The measures given are those of the legs opposite and adjacent to $\angle R$, so write an equation using the tangent ratio. $\tan R = \frac{PQ}{R} = \frac{72}{R} = 2.88$.

$$QR = 25^{-2.00}$$

If $\tan R = 2.88$, then $R = \tan^{-1}(2.88)$.

 $m \angle R \approx 70.9^{\circ}$

ANSWER:

70.9

8.

SOLUTION:

The measures given are those of the leg opposite to $\angle R$ and the hypotenuse, so write an equation using the sine ratio.

 $\sin R = \frac{PQ}{QR} = \frac{37}{58}$

If
$$\sin R = \frac{37}{58}$$
, then $\sqrt{T} = \sin^{-1}\left(\frac{37}{58}\right)$

Use a calculator.

 $m \angle R \approx 39.6^{\circ}$

ANSWER: 39.6

ANSWER: $x = 4\sqrt{2}, y = 4\sqrt{6}$

Express each ratio as a fraction and as a decimal to the nearest hundredth.

10. $\cos X$

SOLUTION:

The cosine of an angle is defined as the ratio of the adjacent side to the hypotenuse. So,

$$\cos X = \frac{WX}{VX} = \frac{21}{75} = 0.28.$$

ANSWER:

 $\frac{21}{75} = 0.28$

11. tan *X*

SOLUTION:

The tangent of an angle is defined as the ratio of the opposite side to the adjacent side. So,

 $\tan X = \frac{VW}{WX} = \frac{72}{21} \approx 3.43.$

ANSWER:

 $\frac{72}{21} \approx 3.43$

SOLUTION:

The tangent of an angle is defined as the ratio of the opposite side to the adjacent side. So,

 $\tan V = \frac{WX}{VW} = \frac{21}{72} \approx 0.29.$

ANSWER:

 $\frac{21}{72} \approx 0.29$

13. sin V

SOLUTION:

The sine of an angle is defined as the ratio of the opposite side to the hypotenuse. So,

 $\sin V = \frac{WX}{VX} = \frac{21}{75} = 0.28.$

ANSWER:

 $\frac{21}{75} = 0.28$

Find the magnitude and direction of each vector.

14. JK : J(-6, -4) and K(-10, -4)

SOLUTION:

Use the distance formula to find the vector's magnitude. magnitude of $\frac{\partial \mathcal{K}}{\partial \mathcal{K}} = \sqrt{(x_2 - x_1)^2 + (x_2 - x_1)^2}$

$$= \sqrt{(-10+6)^2 + (-4+4)^2}$$
$$= \sqrt{(-4)^2}$$
$$= \sqrt{(-4)^2}$$

Use trigonometry to find the vector's direction.

$$\tan J = \left| \frac{y_2 - y_1}{x_2 - x_1} \right|$$
$$= \left| \frac{-4 + 4}{-10 + 6} \right|$$
$$= \left| \frac{0}{-4} \right|$$
$$= 0$$
$$J = \tan^{-1}(0)$$
$$= 0^{\circ}$$

When repositioned so that its initial point is at the origin, \overline{JK} lies on the negative *x*-axis and forms an angle of 0° . So, the direction of \overline{JK} is the angle it makes with the positive *x*-axis which is $0^{\circ} + 180^{\circ}$ or 180° .

ANSWER:

4 units; 180°

15. \overrightarrow{RS} : R(1, 0) and S(-2, 3)

SOLUTION:

Use the distance formula to find the vector's magnitude.

magnitude of
$$\overline{RS} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(-2 - 1)^2 + (3 - 0)^2}$
= $\sqrt{(-3)^2 + (3)^2}$
= $\sqrt{9 + 9}$
= $\sqrt{18}$
= $3\sqrt{2}$

Use trigonometry to find the vector's direction.

$$\tan R = \left| \frac{y_2 - y_1}{x_2 - x_1} \right|$$
$$= \left| \frac{-2 - 1}{3 - 0} \right|$$
$$= \left| \frac{-3}{3} \right|$$
$$= 1$$
$$R = \tan^{-1}(1)$$
$$= 45^{\circ}$$

When repositioned so that its initial point is at the origin, \overline{RS} lies in the same quadrant and forms an angle with the positive y-axis 45° counter clockwise.

So, the direction of \overline{RS} is the angle it makes with the positive x-axis counter clockwise, which is $90^\circ + 45^\circ$ or 135° .

ANSWER:

3√2,135°

16. **SPACE** Anna is watching a space shuttle launch 6 miles from Cape Canaveral in Florida. When the angle of elevation from her viewing point to the shuttle is 80°, how high is the shuttle, if it is going straight up?

SOLUTION:

Let *x* be the unknown.

```
\tan 80^\circ = \frac{x}{6}x = 6 \tan 80^\circx = 34 \text{ mi}
```

ANSWER: 34 mi Find x. Round angle measures to the nearest degree and side measures to the nearest tenth.

SOLUTION:

By the Law of Sines, $\frac{\sin 37^{\circ}}{21} = \frac{\sin 87^{\circ}}{x}$.

Take the cross products.

 $x \cdot \sin 37^\circ = 21 \cdot \sin 87^\circ$

Divide each side by sin 37°.

 $x = \frac{21 \cdot \sin 87^\circ}{\sin 37^\circ}$

Use a calculator, in degree mode.

 $x \approx 34.8$

ANSWER:

34.8

SOLUTION:

We are given the measures of two sides and their included angle, so use the Law of Cosines.

 $39^{2} = 36^{2} + 59^{2} - 2(36)(59)\cos x$ $1521 = 1296 + 3481 - 4248\cos x$ $1521 = 4777 - 4248\cos x$ $4248\cos x = 4777 - 1521$ $4248\cos x = 3256$ $\cos x = \frac{3256}{4248}$ $x = \cos^{-1}\left(\frac{3256}{4248}\right)$ $\cos^{-1}\left(\frac{3256}{4248}\right)$ 39.96130817

 $x \approx 40.0$

ANSWER:

40

- 19. MULTIPLE CHOICE Which of the following is the length of the leg of a 45° 45° 90° triangle with a hypotenuse of 20?
 - **A** 10 $\mathbf{B} 10\sqrt{2}$ **C** 20 $\mathbf{D} 20\sqrt{2}$

SOLUTION:

Let *x* be the unknown. Use the Pythagorean Theorem. $x^2 + x^2 = 20^2$ $2x^2 = 400$ $x^2 = 200$ $x = 10\sqrt{2}$

So, the correct choice is B.

ANSWER:

В

Find *x*.

SOLUTION:

Use the Pythagorean Theorem to solve for *x*.

$$10^{2} + 24^{2} = x^{2}$$

 $100 + 576 = x^{2}$
 $676 = x^{2}$
 $\sqrt{676} = x$
 $x = 26$

ANSWER: 26

21.

SOLUTION:

Use the Pythagorean Theorem to solve for *x*.

$$x^{2} + 38^{2} = 42^{2}$$

$$x^{2} + 1444 = 1764$$

$$x^{2} = 1764 - 1444$$

$$x^{2} = 320$$

$$x = \sqrt{320} \approx 17.9$$

ANSWER:

√320 ≈ 17.9

22. WHALE WATCHING Isaac is looking through binoculars on a whale watching trip when he notices a sea otter in the distance. If he is 20 feet above sea level in the boat, and the angle of depression is 30°, how far away from the boat is the otter to the nearest foot?

SOLUTION:

Let *x* be the unknown.

 $x = \frac{20}{\tan 30^{\circ}}$ $x \approx 35 \text{ ft}$

ANSWER: 35 ft

Write the component form of each vector.

SOLUTION:

23.

Use component notation and find the change in x-values and the change in y-values. Here, the coordinates of B and C are (-2, -2) and (4, 1) respectively.

$$\overline{AB} = \langle x_2 - x_1, y_2 - y_1 \rangle$$
$$= \langle 4 - (-2), 1 - (-2) \rangle$$
$$= \langle 6, 3 \rangle$$

ANSWER:

(6,3)

SOLUTION:

Use component notation and find the change in x-values and the change in y-values. Here, the coordinates of F and G are (-1, 0) and (1, 2) respectively.

 $\overline{AB} = \langle x_2 - x_1, y_2 - y_1 \rangle$ $= \langle 1 - (-1), 2 - 0 \rangle$ $= \langle 2, 2 \rangle$

ANSWER:

 $\langle 2,2 \rangle$

25. Solve ΔFGH . Round to the nearest degree.

SOLUTION:

Since we are given three sides and no angle measures, we can solve this triangle using the Law of Cosines.

$$6.3^2 = 5.6^2 + 5.8^2 - 2(5.6)(5.8)\cos F$$

$$6.3^2 - (5.6^2 + 5.8^2) = -64.96\cos F$$

$$\frac{6.3^2 - (5.6^2 + 5.8^2)}{-64.96} = \cos F$$

$$\cos x^{-1} \left[\frac{6.3^2 - (5.6^2 + 5.8^2)}{-64.96} \right] = F$$

$$67.1 \approx F$$

Similarly, we can solve for the measure of angle G, using the Law of Cosines.

$$5.6^{2} = 6.3^{2} + 5.8^{2} - 2(6.3)(5.8)\cos G$$

$$5.6^{2} - (6.3^{2} + 5.8^{2}) = -73.08\cos G$$

$$\frac{5.6^{2} - (6.3^{2} + 5.8^{2})}{-73.08} = \cos G$$

$$\cos x^{-1} \left[\frac{5.6^{2} - (6.3^{2} + 5.8^{2})}{-73.08} \right] = G$$

$$54.9 \approx G$$

We know that the sum of the measures all interior angles of a triangle is 180. $m \angle F + m \angle G + m \angle H = 180$

$$67 + 55 + m \angle H = 180$$

 $m \angle H = 58$

ANSWER:

 $m \angle F = 67^\circ, m \angle G = 55^\circ, m \angle H = 58^\circ$