Practice Test - Chapter 8

Find the geometric mean between each pair of numbers.

1.7 and 11

SOLUTION:

By the definition, the geometric mean x of any two numbers a and b is given by $x=\sqrt{a b}$. Therefore, the geometric mean of 7 and 11 is
$\sqrt{(7)(11)}=\sqrt{77} \approx 8.8$.
ANSWER:
$\sqrt{77} \approx 8.8$
2. 12 and 9

SOLUTION:

By the definition, the geometric mean x of any two numbers a and b is given by $x=\sqrt{a b}$. Therefore, the geometric mean of 12 and 9 is
$\sqrt{(12)(9)}=6 \sqrt{3} \approx 10.4$.
ANSWER:
$6 \sqrt{3} \approx 10.4$
3. 14 and 21

SOLUTION:

By the definition, the geometric mean x of any two numbers a and b is given by $x=\sqrt{a b}$. Therefore, the geometric mean of 14 and 21 is
$\sqrt{(14)(21)}=7 \sqrt{6} \approx 17.1$.
ANSWER:
$7 \sqrt{6} \approx 17.1$
4. $4 \sqrt{3}$ and $10 \sqrt{3}$

SOLUTION:

By the definition, the geometric mean x of any two numbers a and b is given by $x=\sqrt{a b}$. Therefore, the geometric mean of $4 \sqrt{3}$ and $10 \sqrt{3}$ is
$\sqrt{(4 \sqrt{3})(10 \sqrt{3})}=2 \sqrt{30} \approx 11$.
ANSWER:
$2 \sqrt{30} \approx 11.0$

Practice Test - Chapter 8

Find x, y, and z.

5.

SOLUTION:

By the Geometric Mean (Leg) Theorem the altitude drawn to the hypotenuse of a right triangle separates the hypotenuse into two segments. The length of a leg of this triangle is the geometric mean between the length of the hypotenuse and the segment of the hypotenuse adjacent to that leg.

$$
\frac{\text { hy potenuse }}{\text { longer leg }}=\frac{\text { hy potemuse }}{\text { longer leg }} \quad \frac{\text { hy potemuse }}{\text { shorter leg }}=\frac{\text { hy potemuse }}{\text { shorter leg }}
$$

Set up a proportion and solve for z and y :

$$
\left.\begin{array}{rlrl}
\frac{13}{z}= & \frac{z}{9} \quad \text { and } & \frac{13}{y} & =\frac{y}{4} \\
z^{2} & =117 \\
z & =\sqrt{117} & & \text { and } \\
& =3 \sqrt{13} & & y
\end{array}\right)=\sqrt{52} .
$$

By the Geometric Mean (Altitude) Theorem the altitude drawn to the hypotenuse of a right triangle separates the hypotenuse into two segments. The length of this altitude is the geometric mean between the lengths of these two segments.

Solve for x
$\frac{9}{x}=\frac{x}{4}$
$x^{2}=36$
$x=6$

ANSWER:
$x=6, y=2 \sqrt{13}, z=3 \sqrt{13}$

Practice Test - Chapter 8

6. FAIRS Blake is setting up his tent at a renaissance fair. If the tent is 8 feet tall, and the tether can be staked no more than two feet from the tent, how long should the tether be?

SOLUTION:

Use the Pythagorean Theorem to find x.
$2^{2}+8^{2}=x^{2}$
$4+64=x^{2}$
$68=x^{2}$
$\sqrt{68}=x$
$x=2 \sqrt{17} \approx 8.2 \mathrm{ft}$

ANSWER:
8.2 ft

Practice Test - Chapter 8

Use a calculator to find the measure of $\angle \boldsymbol{R}$ to the nearest tenth.

SOLUTION:
The measures given are those of the legs opposite and adjacent to $\angle R$, so write an equation using the tangent ratio. $\tan R=\frac{P Q}{Q R}=\frac{72}{25}=2.88$.
If $\tan R=2.88$, then $R=\tan ^{-1}(2.88)$.

Use a calculator.
$\tan ^{-1}(2.88)$
70.85186254
$m \angle R \approx 70.9^{\circ}$
ANSWER:
70.9

Practice Test - Chapter 8

8.

SOLUTION:

The measures given are those of the leg opposite to $\angle R$ and the hypotenuse, so write an equation using the sine ratio.
$\sin R=\frac{P Q}{Q R}=\frac{37}{58}$

If $\sin R=\frac{37}{58}$, then $\sqrt{T}=\sin ^{-1}\left(\frac{37}{58}\right)$.

Use a calculator.

$m \angle R \approx 39.6^{\circ}$
ANSWER:
39.6

Practice Test - Chapter 8

9.

Find x and y.

SOLUTION:
$\begin{aligned} \sin 45^{\circ} & =\frac{x}{8} \\ x & =8 \sin 45^{\circ}\end{aligned}$
$x=8\left(\frac{1}{\sqrt{2}}\right)$
$x=\frac{8}{\sqrt{2}}$
$x=\frac{8 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}}$
$x=\frac{8 \sqrt{2}}{2}$
$x=4 \sqrt{2}$
$\tan 30^{\circ}=\frac{x}{y}$

$$
\begin{aligned}
\frac{1}{\sqrt{3}} & =\frac{4 \sqrt{2}}{y} \\
y & =4 \sqrt{2} \cdot \sqrt{3} \\
y & =4 \sqrt{6}
\end{aligned}
$$

ANSWER:
$x=4 \sqrt{2}, y=4 \sqrt{6}$

Practice Test - Chapter 8

Express each ratio as a fraction and as a decimal to the nearest hundredth.

10. $\cos X$

SOLUTION:

The cosine of an angle is defined as the ratio of the adjacent side to the hypotenuse. So, $\cos X=\frac{W X}{V X}=\frac{21}{75}=0.28$.

ANSWER:
$\frac{21}{75}=0.28$
11. $\tan X$

SOLUTION:
The tangent of an angle is defined as the ratio of the opposite side to the adjacent side. So, $\tan X=\frac{V W}{W X}=\frac{72}{21} \approx 3.43$.

ANSWER:
$\frac{72}{21} \approx 3.43$
12. $\tan V$

SOLUTION:
The tangent of an angle is defined as the ratio of the opposite side to the adjacent side. So, $\tan V=\frac{W X}{V W}=\frac{21}{72} \approx 0.29$.

ANSWER:
$\frac{21}{72} \approx 0.29$

Practice Test - Chapter 8

13. $\sin V$

SOLUTION:

The sine of an angle is defined as the ratio of the opposite side to the hypotenuse. So,
$\sin V=\frac{W X}{V X}=\frac{21}{75}=0.28$.
ANSWER:

$$
\frac{21}{75}=0.28
$$

Find the magnitude and direction of each vector.
14. $\overrightarrow{J K}: J(-6,-4)$ and $K(-10,-4)$

SOLUTION:

Use the distance formula to find the vector's magnitude.

$$
\text { magnitude of } \begin{aligned}
J K & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-10+6)^{2}+(-4+4)^{2}} \\
& =\sqrt{(-4)^{2}} \\
& =4
\end{aligned}
$$

Use trigonometry to find the vector's direction.

$$
\begin{aligned}
\tan J & =\left|\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right| \\
& =\left|\frac{-4+4}{-10+6}\right| \\
& =\left|\frac{0}{-4}\right| \\
& =0 \\
J & =\tan ^{-1}(0) \\
& =0^{\circ}
\end{aligned}
$$

When repositioned so that its initial point is at the origin, $\overline{J K}$ lies on the negative x-axis and forms an angle of 0°.
So, the direction of $\overrightarrow{J K}$ is the angle it makes with the positive x-axis which is $0^{\circ}+180^{\circ}$ or 180°.
ANSWER:
4 units; 180°

Practice Test - Chapter 8

15. $\overrightarrow{R S}: R(1,0)$ and $S(-2,3)$

SOLUTION:

Use the distance formula to find the vector's magnitude.

$$
\text { magnitude of } \begin{aligned}
\overrightarrow{R S} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-2-1)^{2}+(3-0)^{2}} \\
& =\sqrt{(-3)^{2}+(3)^{2}} \\
& =\sqrt{9+9} \\
& =\sqrt{18} \\
& =3 \sqrt{2}
\end{aligned}
$$

Use trigonometry to find the vector's direction.

$$
\begin{aligned}
\tan R & =\left|\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right| \\
& =\left|\frac{-2-1}{3-0}\right| \\
& =\left|\frac{-3}{3}\right| \\
& =1 \\
R & =\tan ^{-1}(1) \\
& =45^{\circ}
\end{aligned}
$$

When repositioned so that its initial point is at the origin, $R S$ lies in the same quadrant and forms an angle with the positive y-axis 45° counter clockwise.
So, the direction of $\overline{R S}$ is the angle it makes with the positive x-axis counter clockwise, which is $90^{\circ}+45^{\circ}$ or 135°.
ANSWER:

$$
3 \sqrt{2}, 135^{\circ}
$$

16. SPACE Anna is watching a space shuttle launch 6 miles from Cape Canaveral in Florida. When the angle of elevation from her viewing point to the shuttle is 80°, how high is the shuttle, if it is going straight up?

SOLUTION:

Let x be the unknown.

$$
\begin{aligned}
\tan 80^{\circ} & =\frac{x}{6} \\
x & =6 \tan 80^{\circ} \\
x & =34 \mathrm{mi}
\end{aligned}
$$

ANSWER:
34 mi

Practice Test - Chapter 8

Find x. Round angle measures to the nearest degree and side measures to the nearest tenth.
17.

SOLUTION:
By the Law of Sines, $\frac{\sin 37^{\circ}}{21}=\frac{\sin 87^{\circ}}{x}$.
Take the cross products.
$x \cdot \sin 37^{\circ}=21 \cdot \sin 87^{\circ}$

Divide each side by $\sin 37^{\circ}$.
$x=\frac{21 \cdot \sin 87^{\circ}}{\sin 37^{\circ}}$
Use a calculator, in degree mode.
(21*sir(87)) sin (37)
34.84662134
$x \approx 34.8$
ANSWER:
34.8

Practice Test - Chapter 8

18.

SOLUTION:

We are given the measures of two sides and their included angle, so use the Law of Cosines.

```
        \(39^{2}=36^{2}+59^{2}-2(36)(59) \cos x\)
\(1521=1296+3481-4248 \cos x\)
    \(1521=4777-4248 \cos x\)
\(4248 \cos x=4777-1521\)
\(4248 \cos x=3256\)
    \(\cos x=\frac{3256}{4248}\)
    \(x=\cos ^{-1}\left(\frac{3256}{4248}\right)\)
\(\cos ^{-1(3256 / 4248)} 39.96150817\)
\(x \approx 40.0\)
ANSWER:
40
```


Practice Test - Chapter 8

19. MULTIPLE CHOICE Which of the following is the length of the leg of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with a hypotenuse of 20 ?
A 10
B $10 \sqrt{2}$
C 20
D $20 \sqrt{2}$

SOLUTION:

Let x be the unknown.
Use the Pythagorean Theorem.

$$
\begin{aligned}
x^{2}+x^{2} & =20^{2} \\
2 x^{2} & =400 \\
x^{2} & =200 \\
x & =10 \sqrt{2}
\end{aligned}
$$

So, the correct choice is B.
ANSWER:
B

Find x.

20.

SOLUTION:

Use the Pythagorean Theorem to solve for x.

$$
\begin{aligned}
& 10^{2}+24^{2}=x^{2} \\
& 100+576=x^{2} \\
& 676=x^{2} \\
& \sqrt{676}=x \\
& x=26
\end{aligned}
$$

ANSWER:
26

Practice Test - Chapter 8

21.

SOLUTION:

Use the Pythagorean Theorem to solve for x.
$x^{2}+38^{2}=42^{2}$
$x^{2}+1444=1764$
$x^{2}=1764-1444$
$x^{2}=320$
$x=\sqrt{320} \approx 17.9$

ANSWER:
$\sqrt{320} \approx 17.9$
22. WHALE WATCHING Isaac is looking through binoculars on a whale watching trip when he notices a sea otter in the distance. If he is 20 feet above sea level in the boat, and the angle of depression is 30°, how far away from the boat is the otter to the nearest foot?

SOLUTION:

Let x be the unknown.

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{20}{x} \\
x & =\frac{20}{\tan 30^{\circ}} \\
x & \approx 35 \mathrm{ft}
\end{aligned}
$$

ANSWER:
35 ft

Practice Test - Chapter 8

Write the component form of each vector.

23.

SOLUTION:

Use component notation and find the change in x-values and the change in y-values. Here, the coordinates of B and C are $(-2,-2)$ and $(4,1)$ respectively.

$$
\begin{aligned}
\overrightarrow{A B} & =\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle \\
& =\langle 4-(-2), 1-(-2)\rangle \\
& =\langle 6,3\rangle
\end{aligned}
$$

ANSWER:
$\langle 6,3\rangle$
24.

SOLUTION:

Use component notation and find the change in x-values and the change in y-values. Here, the coordinates of F and G are $(-1,0)$ and $(1,2)$ respectively.

$$
\begin{aligned}
\overrightarrow{A B} & =\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle \\
& =\langle 1-(-1), 2-0\rangle \\
& =\langle 2,2\rangle
\end{aligned}
$$

ANSWER:
$\langle 2,2\rangle$

Practice Test - Chapter 8

25. Solve $\triangle F G H$. Round to the nearest degree.

SOLUTION:

Since we are given three sides and no angle measures, we can solve this triangle using the Law of Cosines.

$$
\begin{aligned}
6.3^{2} & =5.6^{2}+5.8^{2}-2(5.6)(5.8) \cos F \\
6.3^{2}-\left(5.6^{2}+5.8^{2}\right) & =-64.96 \cos F \\
\frac{6.3^{2}-\left(5.6^{2}+5.8^{2}\right)}{-64.96} & =\cos F \\
\cos x-1\left[\frac{6.3^{2}-\left(5.6^{2}+5.8^{2}\right)}{-64.96}\right] & =F \\
67.1 & \approx F
\end{aligned}
$$

Similarly, we can solve for the measure of angle G, using the Law of Cosines.

$$
\begin{aligned}
5.6^{2} & =6.3^{2}+5.8^{2}-2(6.3)(5.8) \cos G \\
5.6^{2}-\left(6.3^{2}+5.8^{2}\right) & =-73.08 \cos G \\
\frac{5.6^{2}-\left(6.3^{2}+5.8^{2}\right)}{-73.08} & =\cos G \\
\cos x-1\left[\frac{5.6^{2}-\left(6.3^{2}+5.8^{2}\right)}{-73.08}\right] & =G \\
54.9 & \approx G
\end{aligned}
$$

We know that the sum of the measures all interior angles of a triangle is 180 .
$m \angle F+m \angle G+m \angle H=180$

$$
\begin{aligned}
67+55+m \angle H & =180 \\
m \angle H & =58
\end{aligned}
$$

ANSWER:
$m \angle F=67^{\circ}, m \angle G=55^{\circ}, m \angle H=58^{\circ}$

