1. **POOLS** Amanda's family has a swimming pool that is 4 feet deep in their backyard. If the diameter of the pool is 25 feet, what is the circumference of the pool to the nearest foot?

```
SOLUTION:

C = \pi d Circumference Formula

= \pi(25) Substitution

\approx 79 Simplify.
```

So, the circumference of the pool is about 79 feet.

ANSWER:

79 ft

2. Find the exact circumference of the circle below.

SOLUTION:

Here, the diameter of the circle is 32. $C = \pi d$ Circumference Formula $= \pi(32)$ Substitution $= 32\pi$ Simplify.

ANSWER:

32π

Find the value of x.

SOLUTION:

The sum of adjacent angles that form a line is 180. x + 90 + 67 = 180 Angle Addition Postulate

x + 157 = 180 Simplify x = 23 Subtract 157 from each side.

ANSWER:

23

SOLUTION:

If the measure of an arc is x, then the measure of the related central angle is x. The sum of the central angles of a circle is 360. So,

90+65+110 + x = 360 Sum of Central Angles 265+x = 360 Simplify. x = 95 Subtract 265 from each side.

ANSWER:

95

SOLUTION:

Use m = 78 and r = 3 to find the length of the arc. $\ell = \frac{x}{360} \cdot 2\pi r$ ArcLength Equation $x = \frac{78}{360} \cdot 2\pi (3)$ m = 78, r = 3 ≈ 4.1 Use a calculator. Therefore, the value of x is about 4.1 inches.

ANSWER:

4.1 in.

SOLUTION:

If two arcs on the same circle are congruent, then the chords determined by the arcs are congruent. 12x - 8 = 5x + 13 Equal arcs cut equal chords.

7x = 21	Add 8 and - 5x to each side.
x = 3	Divide each side to each side.

ANSWER:

3

7. MULTIPLE CHOICE What is ED?

If $\angle DEF$ is a right angle, then using the Pythagorean Theorem the measure of *ED* would be $\sqrt{65^2 - 60^2}$ or 25. $\angle DEF$ would be a right angle if it intercepts a semicircle or a diameter. There is no indication that $m(\operatorname{arc} DF) = 180$ or that \overline{DF} passes through the center of the circle. Therefore, there is not enough information to determine the measure of *ED*.

So, the correct choice is D.

ANSWER: D

8. Find x if $\bigcirc M \cong \bigcirc N$.

SOLUTION:

By Theorem 10.2, in the same circle or congruent circles, if two chords are equal, then their corresponding minor arcs are congruent.

$m(\operatorname{arc} ST) = m(\operatorname{arc} UV)$	Theorem 10.2
2x = 5x - 27	Substitution
27 = 3x	Add $-2x$ and 27 to each side.
9 = x	Divide each side by 3.
Therefore, $x = 9$.	

ANSWER:

9

9. MULTIPLE CHOICE How many points are shared by concentric circles?

F 0

G 1

H 2

J infinite points

SOLUTION:

Concentric circles have the same center but the circles do not intersect. Therefore, the number of points shared by concentric circles is 0.

So the correct choice is F.

ANSWER:

F

10. Determine whether \overline{FG} is tangent to $\bigcirc E$. Justify your answer.

SOLUTION:

If \square is tangent to \square , then \square must be perpendicular to \square . This would make $\angle G$ a right angle and $\triangle FEG$ would be a right triangle. Use the converse of the Pythagorean Theorem to determine if $\triangle FEG$ is a right triangle.

$$30^2 = 26^2 + 17^2$$

900 = 676 + 289

900 ≠ 965

No; Since $c^2 \neq a^2 + b^2$, ΔEFG is not a right triangle, so angle G is not a right angle and \overline{FG} cannot be tangent to

ANSWER:

No; ΔEFG is not a right triangle, so $\angle G$ is not a right angle and \overline{FG} cannot be tangent.

11. MULTIPLE CHOICE Which of the figures below shows a polygon circumscribed about a circle?

SOLUTION:

If a polygon is circumscribed about the circle, then each side of the polygon is tangent to the circle. The polygons in A and D have no sides that are tangent to the circles and in B only 3 of the 4 sides are tangent to the circle. All the sides of the polygon in C are tangent to the circle. Therefore, the correct choice is C.

ANSWER:

С

12. Find the perimeter of the triangle. Assume that segments that appear to be tangent are tangent.

SOLUTION:

By Theorem 10.11, tangents to a circle from the same exterior point are congruent. There must be two segments with a measure of 14, two segments with a measure of 9, and two segments with a measure of 15 - 9 or 6.

The three sides of the triangle are then 14 + 6 or 20, 6 + 9 or 15, and 14 + 9 or 23. P = a + b + c Perimeter formula for a triangle

= 20 + 15 + 23 Substitution = 58 Simplify.

```
ANSWER:
```

58

Find each measure.

SOLUTION:

Major arc *RQS* shares the same endpoints with minor arc *RS*, so $m(\operatorname{arc} RQS) = 360 - m(\operatorname{arc} RS)$ or 257. $m \angle T = \frac{1}{2} [m(\operatorname{arc} RQS) - m(\operatorname{arc} RS)]$ Theorem 10.14

$$= \frac{1}{2} [257 - 103] \qquad m(\operatorname{arc} RQS) = 257, m(\operatorname{arc} RS) = 103$$

= $\frac{1}{2} (154) \qquad Simplify.$
= 77 Multiply.

ANSWER:

77

14.
$$x$$

 A
 $x = 1$
 $x = 1$

SOLUTION:
 $BE \cdot ED = AE \cdot EC$ Theorem 10.15x(x+10) = (x+1)(x+3)Substitution $x^2 + 10x = x^2 + 4x + 3$ Multiply.6x = 3Subtract x^2 and 4x from each side. $x = \frac{1}{2}$ Divide each side by 6.

ANSWER:

- $\frac{1}{2}$
- 15. **FLOWERS** Hannah wants to encircle a tree trunk with a flower bed. If the center of the tree trunk is the origin and Hannah wants the flower bed to extend to 3 feet from the center of the tree, what is the equation that would represent the flower bed?

SOLUTION:

The flower bed would be represented by the equation of a circle using (h, k) = (0, 0) and r = 3.

 $(x-h)^{2} + (y-k)^{2} = r^{2}$ Equation of a circle $(x-0)^{2} + (y-0)^{2} = 3^{2}$ h = 0, k = 0, r = 3 $x^{2} + y^{2} = 9$ Simplify.

ANSWER:

 $x^2 + y^2 = 9$