Practice Test - Chapter 10

1. POOLS Amanda's family has a swimming pool that is 4 feet deep in their backyard. If the diameter of the pool is 25 feet, what is the circumference of the pool to the nearest foot?
```
SOLUTION:
C=\pid Circumference Formula
=\pi(25) Substitution
\approx79 Simplify.
```

So, the circumference of the pool is about 79 feet.
ANSWER:
79 ft
2. Find the exact circumference of the circle below.

SOLUTION:

Here, the diameter of the circle is 32 .

$$
\begin{aligned}
C & =\pi d & & \text { Circumference Formula } \\
& =\pi(32) & & \text { Substitution } \\
& =32 \pi & & \text { Simplify }
\end{aligned}
$$

ANSWER:

32π

Find the value of x.

3.

SOLUTION:

The sum of adjacent angles that form a line is 180.
$x+90+67=180 \quad$ AngleAddition Postulate

$$
\begin{aligned}
x+157 & =180 & & \text { Simplify } \\
x & =23 & & \text { Subtract } 157 \text { from each side } .
\end{aligned}
$$

ANSWER:
23

Practice Test - Chapter 10

4.

SOLUTION:

If the measure of an arc is x, then the measure of the related central angle is x. The sum of the central angles of a circle is 360 . So,

$$
\begin{aligned}
90+65+110+x & =360 & & \text { Sum of Central Angles } \\
265+x & =360 & & \text { Simplify } . \\
x & =95 & & \text { Subtract } 265 \text { from each side. }
\end{aligned}
$$

ANSWER:
95
5.

SOLUTION:

Use $m=78$ and $r=3$ to find the length of the arc.
$\ell=\frac{x}{360} \cdot 2 \pi r \quad$ ArcLength Equation
$x=\frac{78}{360} \cdot 2 \pi(3) \quad m=78, r=3$
≈ 4.1 Use a calculator
Therefore, the value of x is about 4.1 inches.
ANSWER:
4.1 in.

Practice Test - Chapter 10

6.

SOLUTION:

If two arcs on the same circle are congruent, then the chords determined by the arcs are congruent. $12 x-8=5 x+13$ Equal arcs cut equal chords.

$$
\begin{aligned}
7 x & =21 & & \text { Add 8and }-5 x \text { to each side. } \\
x & =3 & & \text { Div ide each sideto each side. }
\end{aligned}
$$

ANSWER:
3
7. MULTIPLE CHOICE What is $E D$?

A 15
B 25
C 88.5
D not enough information

SOLUTION:

If $\angle D E F$ is a right angle, then using the Pythagorean Theorem the measure of $E D$ would be $\sqrt{65^{2}-60^{2}}$ or 25 . $\angle D E F$ would be a right angle if it intercepts a semicircle or a diameter. There is no indication that $m(\operatorname{arc} D F)=180$ or that $\overline{D F}$ passes through the center of the circle. Therefore, there is not enough information to determine the measure of $E D$.
So, the correct choice is D.

ANSWER:

D

Practice Test - Chapter 10

8. Find x if $\odot M \cong \odot N$.

SOLUTION:

By Theorem 10.2, in the same circle or congruent circles, if two chords are equal, then their corresponding minor arcs are congruent.
$m(\operatorname{arcST})=m(\operatorname{arc} U V) \quad$ Theorem 10.2
$2 x=5 x-27 \quad$ Substitution
$27=3 x \quad$ Add $-2 x$ and 27 to each side.
$9=x \quad$ Div ide each sideby 3
Therefore, $x=9$.
ANSWER:
9
9. MULTIPLE CHOICE How many points are shared by concentric circles?

F 0
G 1
H 2
\mathbf{J} infinite points

SOLUTION:

Concentric circles have the same center but the circles do not intersect. Therefore, the number of points shared by concentric circles is 0 .
So the correct choice is F .
ANSWER:
F

Practice Test - Chapter 10

10. Determine whether $\overline{F G}$ is tangent to $\odot E$. Justify your answer.

SOLUTION:

If - is tangent to $\stackrel{\underline{x}}{ }$, then - must be perpendicular to - . This would make $\angle G$ a right angle and $\triangle F E G$ would be a right triangle. Use the converse of the Pythagorean Theorem to determine if $\triangle F E G$ is a right triangle.
$30^{2}=26^{2}+17^{2}$
$900 \stackrel{?}{=} 676+289$
$900 \neq 965$
No; Since $c^{2} \neq a^{2}+b^{2}, \triangle E F G$ is not a right triangle, so angle G is not a right angle and $\overline{F G}$ cannot be tangent to
\square
ANSWER:
No; $\triangle E F G$ is not a right triangle, so $\angle G$ is not a right angle and $\overline{F G}$ cannot be tangent.

Practice Test - Chapter 10

11. MULTIPLE CHOICE Which of the figures below shows a polygon circumscribed about a circle?

A

B

C

D

SOLUTION:

If a polygon is circumscribed about the circle, then each side of the polygon is tangent to the circle. The polygons in A and D have no sides that are tangent to the circles and in B only 3 of the 4 sides are tangent to the circle. All the sides of the polygon in C are tangent to the circle. Therefore, the correct choice is C .

ANSWER:
C

Practice Test - Chapter 10

12. Find the perimeter of the triangle. Assume that segments that appear to be tangent are tangent.

SOLUTION:
By Theorem 10.11, tangents to a circle from the same exterior point are congruent. There must be two segments with a measure of 14 , two segments with a measure of 9 , and two segments with a measure of $15-9$ or 6 .

The three sides of the triangle are then $14+6$ or $20,6+9$ or 15 , and $14+9$ or 23 .

$$
\begin{aligned}
P & =a+b+c & & \text { Perimeter formula for atriangle } \\
& =20+15+23 & & \text { Substitution } \\
& =58 & & \text { Simplify } .
\end{aligned}
$$

ANSWER:
58

Find each measure.

13. $m \angle T$

SOLUTION:

Major arc $R Q S$ shares the same endpoints with minor arc $R S$, so $m(\operatorname{arc} R Q S)=360-m(\operatorname{arc} R S)$ or 257 .

$$
\begin{aligned}
m \angle T & =\frac{1}{2}[m(\operatorname{arcRQS})-m(\operatorname{arcRS})] & & \text { Theorem } 10.14 \\
& =\frac{1}{2}[257-103] & & m(\operatorname{arc} R Q S)=257, m(\operatorname{arcRS})=103 \\
& =\frac{1}{2}(154) & & \text { Simplify. } \\
& =77 & & \text { Multiply. }
\end{aligned}
$$

ANSWER:
77

Practice Test - Chapter 10

14. x

SOLUTION:

$$
\begin{aligned}
B E \cdot E D & =A E \cdot E C & & \text { Theorem } 10.15 \\
x(x+10) & =(x+1)(x+3) & & \text { Substitution } \\
x^{2}+10 x & =x^{2}+4 x+3 & & \text { Multiply } \\
6 x & =3 & & \text { Subtract } x^{2} \text { and } 4 x \mathrm{fr} \\
x & =\frac{1}{2} & & \text { Div ide each sideby } 6 .
\end{aligned}
$$

ANSWER:
$\frac{1}{2}$
15. FLOWERS Hannah wants to encircle a tree trunk with a flower bed. If the center of the tree trunk is the origin and Hannah wants the flower bed to extend to 3 feet from the center of the tree, what is the equation that would represent the flower bed?

SOLUTION:
The flower bed would be represented by the equation of a circle using $(h, k)=(0,0)$ and $r=3$.

$$
\begin{aligned}
(x-h)^{2}+(y-k)^{2} & =r^{2} & & \text { Equation of a circle } \\
(x-0)^{2}+(y-0)^{2} & =3^{2} & & h=0, k=0, r=3 \\
x^{2}+y^{2} & =9 & & \text { Simplify } .
\end{aligned}
$$

ANSWER:

$$
x^{2}+y^{2}=9
$$

