Copy the figure and the given line of reflection. Then draw the reflected image in this line using a ruler.

SOLUTION:

Step 1: Draw a line through each vertex that is perpendicular to line *c*.

Step 2: Measure the distance from point X to the line c. Then locate X' the same distance from line c on the opposite side.

Step 3: Repeat Step 2 to locate points *Y* and *Z*'. Then connect the vertices, *X*', *Y*, and *Z*' to form the reflected image.

X

SOLUTION: **Step 1**: Draw a line through each vertex that is perpendicular to line *s*.

Step 2: Measure the distance from point F to the line s. Then locate F' the same distance from line s on the opposite side.

Step 3: Repeat Step 2 to locate points G' and H'. Then connect the vertices, J', F', G', and H' to form the reflected image.

ANSWER:

eSolutions Manual - Powered by Cognero

Graph each figure and its image after the specified reflection.

3. ΔFGH has vertices F(-4, 3), G(-2, 0), and H(-1, 4); in the y-axis

SOLUTION:

To reflect over the *y*-axis, multiply the *x*-coordinate of each vertex by -1.

 $(x, y) \to (-x, y)$ $F(-4, 3) \to F'(4, 3)$ $G(-2, 0) \to G'(2, 0)$ $H(-1, 4) \to H'(1, 4)$

Plot the points. Then connect the vertices, F', G', and H' to form the reflected image.

H	+		-		y		-		
Ħ	+			н	H'		-		
F	1	-	7			F	/	2	F'
H	Y		F		_	4	1		
-	-		G	0	-	G′			X

Mid-Chapter Quiz: Lessons 9-1 through 9-3

4. rhombus QRST has vertices Q(2, 1), R(4, 3), S(6, 1), and T(4, -1); in the x-axis

SOLUTION:

To reflect over the x-axis, multiply the y-coordinate of each vertex by -1.

 $\begin{array}{l} (x,y) \to (-x,y) \\ Q(2,1) \to Q'(2,-1) \\ R(4,3) \to R'(4,-3) \\ S(6,1) \to S'(6,-1) \\ T(4,-1) \to T'(4,1) \end{array}$

Plot the points. Then connect the vertices, Q', R', S', and T to form the reflected image.

ANSWER:

-	y						П	-	
					R			1	
	1	1		\checkmark				0	
		Q		T'			S		
						/			
Ò				\sim	\sim				X
Ò	_	Q'	K	P	Ţ	Ð	S'		X
Ò		Q	K		T	\geq	S'		X
Õ		Q	K	R	T	\geq	S'		X

5. **CLUBS** The drama club is selling candy during the intermission of a school play. Locate point *P* along the wall to represent the candy table so that people coming from either door *A* or door *B* would walk the same distance to the table.

SOLUTION:

Point P is along the wall and must be equidistant from points A and B.

Step 1: Use the reflection of point *B* in the line (wall) to locate *B*'.

Step 2: Draw line *AB*'.

Step 3: *P* is located at the intersection of *AB*' and the wall.

Graph each figure and its image after the specified translation.

6. $\triangle ABC$ with vertices A(0, 0), B(2, 1), C(1, -3); (3, -1)

SOLUTION:

Translation along (3,-1): $(x, y) \to (x+3, y-1)$ $(0,0) \to (3,-1)$ $(2,1) \to (5,0)$ $(1,-3) \to (4,-4)$

Graph $\triangle ABC$ and its image.

	1	y						
				В				
	A		1				B'	
	0	Γ	7	A'		7		X
		Λ	Τ		٨	7		
					1	1		
			C					
\square						C'		
\square								
\square	1	,						

7. rectangle *JKLM* has vertices J(-4, 2), K(-4, -2), L(-1, -2), and M(-1, 2); (5, -3)

SOLUTION:

Translation along (5, -3): $(x, y) \rightarrow (x + 5, y - 3)$ $(-4, 2) \rightarrow (1, -1)$ $(-4, -2) \rightarrow (1, -5)$ $(-1, -2) \rightarrow (4, -5)$

$$(-1,-2) \rightarrow (4,-3)$$

 $(-1,2) \rightarrow (4,-1)$

Graph rectangle JKLM and its image.

		y	
J	м		
-	0	<i>J</i> ′	, X M'
к	L		
		K'	Ľ

		y	
J	М		++
-	0	<i>J</i> ′	Ň
к	L		
\vdash	+++	K'	L

Copy the figure and the given translation vector. Then draw the translation of the figure along the translation vector.

8.

SOLUTION:

Step 1: Draw a line through each vertex parallel to vector j.

Step 2 : Measure the length of vector j. Locate point *X*' by marking off this distance along the line through vertex *X*, starting at *X* and in the same direction as the vector.

Step 3: Repeat Step 2 to locate points *Y* and *Z*'. Then connect vertices *X*', *Y*, and *Z*' to form the translated image.

SOLUTION: Step 1: Draw a line through each vertex parallel to vector \vec{x} .

Step 2 : Measure the length of vector \vec{x} . Locate point *A* ' by marking off this distance along the line through vertex *A*, starting at *A* and in the same direction as the vector.

Step 3: Repeat Step 2 to locate points *B*', *C*', and *D*'. Then connect vertices *A*', *B*', *C*', and *D*' to form the translated image.

Mid-Chapter Quiz: Lessons 9-1 through 9-3

10. **COMICS** Alex is making a comic. He uses graph paper to make sure the dimensions of his drawings are accurate. If he draws a coordinate plane with two flies as shown below, what vector represents the movement from fly 1 to fly 2?

SOLUTION:

Fly 1 moved 6 units right and then 1 unit up to reach Fly 2's position. So, the translation vector should be (6,1).

ANSWER:

(6,1).

Copy each polygon and point *R*. Then use a protractor and ruler to draw the specified rotation of each figure about point *R*.

11. 45°

SOLUTION: Step 1: Draw a 45° angle using *RS*.

Step 2: Locate S' on the new line such that RS' equals RS.

Step 3: Repeat Steps 1-2 for vertices Q and T and draw the new parallelogram.

SOLUTION: Step 1: Draw a segment from *F* to *R*.

Step 2: Draw a 60° angle using *FR*.

Step 3: Use a ruler to draw F' such that FR = F'R.

Step 4: Repeat Steps 1-3 for vertices *C*, *D*, and *G* to complete the new rectangle.

13. MULTIPLE CHOICE What is the image of point *M* after a rotation of 90° about the origin?

SOLUTION:

To rotate a point 90° clockwise about the origin, multiply the *y*-coordinate of each vertex by -1 and interchange. The coordinates of point *M* are (1, 3).

 $(x,y) \!\rightarrow\! (-y,x)$

 $(1,3) \rightarrow (-3,1)$

So, the correct option is A.

ANSWER:

A

Graph each figure and its image after the specified rotation.

14. ΔRST has vertices R(-3, 0), S(-1, -4), and T(0, -1); 90°

SOLUTION:

To rotate a point 90° counterclockwise about the origin, multiply the *y*-coordinate of each vertex by -1 and interchange.

 $(x, y) \rightarrow (-y, x)$

 $(-3,0) \rightarrow (0,-3)$

$$(-1,-4) \rightarrow (4,-1)$$

 $(0,-1) \rightarrow (1,0)$

Graph ΔRST and its image.

ANSWER:

15. square JKLM has vertices J(-1, 2), K(-1, -2), L(3, -2), and M(3, 2); 180°

SOLUTION:

To rotate a point 180° counterclockwise about the origin, multiply the *x*- and *y*-coordinate of each vertex by -1. (*x*, *y*) \rightarrow (-*x*, -*y*)

 $(-1,2) \rightarrow (1,-2)$

 $(-1,-2) \rightarrow (1,2)$

$$(3,-2) \rightarrow (-3,2)$$

$$(3,2) \rightarrow (-3,-2)$$

Graph square JKLM and its image.

					y			
H,	,		,			VI		
-	-	-	5			Λ.	м	-
H	1			H		-		X
	1			0				1
			_					
1	1		K			J	L	
\vdash	+	-						
	_	_						