Mid-Chapter Quiz: Lessons 8-1 through 8-4

Find the geometric mean between each pair of numbers.

1. 12 and 3

SOLUTION:

The geometric mean between a and b is given by, $x=\sqrt{a b}$.
Substitute 12 for a and 3 for b.

$$
\begin{aligned}
x & =\sqrt{12 \cdot 3} \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

ANSWER:

6
2. 63 and 7

SOLUTION:

The geometric mean between a and b is given by, $x=\sqrt{a b}$.
Substitute 63 for a and 7 for b.

$$
\begin{aligned}
x & =\sqrt{63 \cdot 7} \\
& =\sqrt{441} \\
& =21
\end{aligned}
$$

ANSWER:
21
3. 45 and 20

SOLUTION:

The geometric mean between a and b is given by, $x=\sqrt{a b}$.
Substitute 45 for a and 20 for b.

$$
\begin{aligned}
x & =\sqrt{45 \cdot 20} \\
& =\sqrt{900} \\
& =30
\end{aligned}
$$

ANSWER:
30

Mid-Chapter Quiz: Lessons 8-1 through 8-4

4. 50 and 10

SOLUTION:
The geometric mean between a and b is given by, $x=\sqrt{a b}$.
Substitute 50 for a and 10 for b.

$$
\begin{aligned}
x & =\sqrt{50 \cdot 10} \\
& =\sqrt{500} \\
& =\sqrt{100 \cdot 5} \\
& =10 \sqrt{5}
\end{aligned}
$$

ANSWER:
$10 \sqrt{5}$

Write a similarity statement identifying the three similar triangles in each figure.

5.

SOLUTION:

$\triangle P R Q \sim \triangle Q R S \sim \triangle P Q S$
ANSWER:
$\triangle P R Q \sim \triangle Q R S \sim \triangle P Q S$

Mid-Chapter Quiz: Lessons 8-1 through 8-4

SOLUTION:

$\triangle A B D \sim \triangle B C D \sim \triangle A C B$
ANSWER:
$\triangle A B D \sim \triangle B C D \sim \triangle A C B$

Mid-Chapter Quiz: Lessons 8-1 through 8-4

Find x, y, and z.
7.

SOLUTION:

By the Geometric Mean (Leg) Theorem the altitude drawn to the hypotenuse of a right triangle separates the hypotenuse into two segments. The length of a leg of this triangle is the geometric mean between the length of the hypotenuse and the segment of the hypotenuse adjacent to that leg.

$$
\frac{\text { hy potemuse }}{\text { longer leg }}=\frac{\text { hy potenuse }}{\text { longer leg }} \quad \frac{\text { hy potenuse }}{\text { shorter leg }}=\frac{\text { hy potenuse }}{\text { shorter leg }}
$$

Set up a proportion and solve for z and y :

$$
\begin{array}{rlrlrl}
\frac{25}{z}= & \frac{z}{16} & \text { and } & \frac{25}{y} & =\frac{y}{9} \\
z^{2} & =400 & & y^{2} & =225 \\
z & =\sqrt{400} & \text { and } & & y & =\sqrt{225} \\
& =20 & & & =15
\end{array}
$$

By the Geometric Mean (Altitude) Theorem the altitude drawn to the hypotenuse of a right triangle separates the hypotenuse into two segments. The length of this altitude is the geometric mean between the lengths of these two segments.

Solve for x :
$\frac{16}{x}=\frac{x}{9}$
$x^{2}=144$
$x=12$

ANSWER:
$x=12, y=15, z=20$
8. PARKS There is a small park in a corner made by two perpendicular streets. The park is 100 ft by 150 ft , with a diagonal path, as shown below. What is the length of path $\overline{A C}$?

SOLUTION:

Use Pythagorean theorem to find the length of the path $\overline{A C}$.

$$
\begin{aligned}
& 100^{2}+150^{2}=A C^{2} \\
& 10000+22500=A C^{2} \\
& 32500=A C^{2} \\
& \sqrt{32500}=A C \\
& 180.3 \approx A C
\end{aligned}
$$

The length of path $\overline{A C}$ is 180.3 ft .
ANSWER:
180.3 ft

Mid-Chapter Quiz: Lessons 8-1 through 8-4

Find x. Round to the nearest hundredth.

9.

SOLUTION:

Use Pythagorean theorem to find the length x.
$x^{2}+5^{2}=16^{2}$
$x^{2}+25=256$
$x^{2}=231$
$x=\sqrt{231}$
$x \approx 15.20$

ANSWER:
$\sqrt{231} \approx 15.20$
10.

SOLUTION:

Use Pythagorean theorem to find the length of the hypotenuse, x.
$4^{2}+6^{2}=x^{2}$
$16+36=x^{2}$
$52=x^{2}$
$\sqrt{52}=x$
$x=2 \sqrt{13} \approx 7.21$
ANSWER:
$2 \sqrt{13} \approx 7.21$

Mid-Chapter Quiz: Lessons 8-1 through 8-4

11. MULTIPLE CHOICE Which of the following sets of numbers is not a Pythagorean triple?

A 9, 12, 15
B $21,72,75$
C 15, 36, 39
D 8, 13, 15

SOLUTION:

By Pythagorean theorem,
$a^{2}+b^{2}=c^{2}$, where c is the hypotenuse of the right triangle.
In choice \mathbf{A},

$$
\begin{array}{rl}
9^{2}+12^{2} & ? \\
=15^{2} \\
81+144 & =225 \\
225 & =225
\end{array}
$$

In choice \mathbf{B},

$$
\begin{aligned}
21^{2}+72^{2} & \stackrel{?}{75^{2}} \\
441+5184 & \stackrel{?}{5} 5625 \\
5625 & =5625
\end{aligned}
$$

In choice \mathbf{C},

$$
\begin{aligned}
15^{2}+36^{2} & =39^{2} \\
225+1296 & =1521 \\
1521 & =1521
\end{aligned}
$$

In choice \mathbf{D},

$$
\begin{aligned}
8^{2}+13^{2} & =15^{2} \\
64+169 & =225 \\
233 & =225 x
\end{aligned}
$$

Therefore, the correct choice is \mathbf{D}.

ANSWER:

D

Mid-Chapter Quiz: Lessons 8-1 through 8-4

Find x.

12.

SOLUTION:

Use special right triangles to find the value of x. In 45-45-90 triangles, the hypotenuse is $\sqrt{2}$ times the leg lengths (l), which are equal.

Therefore, since the legs of this triangle are $6 \sqrt{2}$, the hypotenuse would be $h=(6 \sqrt{2}) \sqrt{2}$.
Simplify:

$$
\begin{aligned}
h & =(6 \sqrt{2}) \sqrt{2} \\
& =6(\sqrt{2} \cdot \sqrt{2}) \\
& =6 \cdot 2 \\
& =12
\end{aligned}
$$

ANSWER:
12

Mid-Chapter Quiz: Lessons 8-1 through 8-4

13.

SOLUTION:

Use special right triangles to find the value of x. In 45-45-90 triangles, the hypotenuse is $\sqrt{2}$ times the leg lengths (l), which are equal.

Therefore, since the legs of this triangle are $9 \sqrt{2}$, the hypotenuse would be $h=(9 \sqrt{2}) \sqrt{2}$.
Simplify:

$$
\begin{aligned}
h & =(9 \sqrt{2}) \sqrt{2} \\
& =9(\sqrt{2} \cdot \sqrt{2}) \\
& =9 \cdot 2 \\
& =18
\end{aligned}
$$

ANSWER:
18
14. DESIGN Jamie designed a pinwheel to put in her garden. In the pinwheel, the blue triangles are congruent equilateral triangles, each with an altitude of 4 inches. The red triangles are congruent isosceles right triangles. The hypotenuse of a red triangle is congruent to a side of the blue triangle.

a. If angles 1,2 , and 3 are congruent, find the measure of each angle.
b. Find the perimeter of the pinwheel.

SOLUTION:

a) Since the base angles of an isosceles triangle are congruent, the measure of each acute angle is 45°. The three angles of an equilateral triangle are congruent and each angle has a measures of 60°.

Let x represent the $m \angle 1, m \angle 2$, or $m \angle$. Set all the measures of all the angles in the pinwheel equal to 360 and solve for x :

Mid-Chapter Quiz: Lessons 8-1 through 8-4

$$
\begin{aligned}
3(x)+3(45)+3(60) & =360 \\
3 x+135+180 & =360 \\
3 x+315 & =360 \\
3 x & =45 \\
x & =15
\end{aligned}
$$

Therefore, the angles 1,2 , and 3 each have a measure of 15°.
b) The altitude of an equilateral triangle divides the triangle in to two $30-60-90$ right triangles with a side of the equilateral triangle as the hypotenuse.The altitude (the longer leg) is 4 inches.
If s is the shortest side of the $30-60-90$ triangle, then the length of the hypotenuse is $2 s$ and the length of the longer leg is $s \sqrt{3}$.

Solve for s :

$$
\begin{aligned}
& s \sqrt{3}=4 \\
& s=\frac{4}{\sqrt{3}} \\
& =\frac{4 \sqrt{3}}{3}
\end{aligned}
$$

The length of the hypotenuse (and the side of the equilateral triangle) is $2\left(\frac{8 \sqrt{3}}{3}\right)=\frac{8 \sqrt{3}}{3}$.
The red triangles are isosceles triangles with hypotenuse measuring $\frac{8 \sqrt{3}}{3}$.
So, the length of each leg of the red triangle is:

$$
\begin{aligned}
\frac{\frac{8 \sqrt{3}}{3}}{\sqrt{2}} & =\frac{8 \sqrt{3}}{3} \cdot \frac{1}{\sqrt{2}} \\
& =\frac{8 \sqrt{3}}{3 \sqrt{2}} \\
& =\frac{8 \sqrt{3}}{3 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{8 \sqrt{6}}{6} \text { or } \frac{4 \sqrt{6}}{3}
\end{aligned}
$$

Find the perimeter of the one of the wings.

Mid-Chapter Quiz: Lessons 8-1 through 8-4

$\left.\begin{array}{l}\text { Perimeter of } \\ \text { this figure }\end{array}\right\}=\frac{8 \sqrt{3}}{3}+\frac{8 \sqrt{3}}{3}+\left(\frac{8 \sqrt{3}}{3}-\frac{4 \sqrt{6}}{3}\right)+\frac{4 \sqrt{6}}{3}+\frac{8 \sqrt{3}}{3}$
Simplify.
$=\frac{8 \sqrt{3}}{3}+\frac{8 \sqrt{3}}{3}+\frac{8 \sqrt{3}}{3}+\frac{8 \sqrt{3}}{3}$
$=4 \cdot \frac{8 \sqrt{3}}{3}$
$=\frac{32 \sqrt{3}}{3}$
There are 3 such wings, therefore the perimeter of the pinwheel is $3 \cdot \frac{32 \sqrt{3}}{3}=32 \sqrt{3} \approx 55$.

The perimeter of the pinwheel is about 55 inches.
ANSWER:
a. 15
b. 55 in.

Mid-Chapter Quiz: Lessons 8-1 through 8-4

Find x and y.

15.

SOLUTION:

In 30-60-90 right triangles, the hypotenuse is twice the shorter leg (h=2s), and the longer leg is $\sqrt{3}$ times the shorter leg $(l=s \sqrt{3})$.

Solve for x :
$x=5 \sqrt{3}$
Solve for y :
$y=2(5)=10$

ANSWER:
$x=5 \sqrt{3} ; y=10$
16.

SOLUTION:

In 30-60-90 right triangles, the hypotenuse is twice the shorter leg $(h=2 s)$, and the longer leg is $\sqrt{3}$ times the shorter leg $l=s \sqrt{3})$.

Solve for x :
$x \sqrt{3}=14 \sqrt{3}$
$x=14$

Solve for y :
$y=2(14)=28$
ANSWER:
$x=14 ; y=28$

Mid-Chapter Quiz: Lessons 8-1 through 8-4

Express each ratio as a fraction and as a decimal to the nearest hundredth.

17. $\tan M$

SOLUTION:

$$
\begin{aligned}
\tan M & =\frac{\text { opposite }}{\text { adjacent }} \\
& =\frac{15}{36} \\
& \approx 0.42
\end{aligned}
$$

ANSWER:
$\frac{15}{36}=0.42$
18. $\cos M$

SOLUTION:

$$
\begin{aligned}
\cos M & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
& =\frac{36}{39} \\
& \approx 0.92
\end{aligned}
$$

ANSWER:
$\frac{36}{39}=0.92$
19. $\cos N$

SOLUTION:
$\cos N=\frac{\text { adjacent }}{\text { hypotenuse }}$
$=\frac{15}{39}$
≈ 0.38
ANSWER:
$\frac{15}{39} \approx 0.38$

Mid-Chapter Quiz: Lessons 8-1 through 8-4

20. $\sin N$

SOLUTION:

$$
\begin{aligned}
\sin N & =\frac{\text { opposite }}{\text { hypotenuse }} \\
& =\frac{36}{39} \\
& \approx 0.92
\end{aligned}
$$

ANSWER:
$\frac{36}{39} \approx 0.92$
21. Solve the right triangle. Round angle measures to the nearest degree and side measures to the nearest tenth.

SOLUTION:

Use Pythagorean theorem to find GJ.

$$
\begin{gathered}
21^{2}+36^{2}=G J^{2} \\
441+1296=G J^{2} \\
G J=\sqrt{1737} \\
G J \approx 41.7
\end{gathered}
$$

Use the tangent ratio to find $m \angle G$ and $m \angle J$.

$$
\begin{aligned}
\tan G & =\frac{\text { opposite }}{\text { adjacent }}=\frac{21}{36} \\
G & =\tan ^{-1}\left(\frac{21}{36}\right) \\
& \approx 30^{\circ}
\end{aligned}
$$

Mid-Chapter Quiz: Lessons 8-1 through 8-4

$$
\begin{aligned}
\tan J & =\frac{\text { opposite }}{\text { adjacent }}=\frac{36}{21} \\
J & =\tan ^{-1}\left(\frac{36}{21}\right) \\
& \approx 60^{\circ}
\end{aligned}
$$

ANSWER:
$J G=41.7 ; m \angle G=30^{\circ} ; m \angle J=60^{\circ}$

