Mid-Chapter Quiz: Lessons 12-1 through 12-4

1. Describe how to use isometric dot paper to sketch the following figure.

SOLUTION:

Use isometric dot paper to sketch a rectangular prism 4 units high, 6 units long, and 5 units wide.

ANSWER:

Use isometric dot paper to sketch a rectangular prism 4 units high, 6 units long, and 5 units wide.
2. Use isometric dot paper to sketch a rectangular prism 2 units high, 3 units long, and 6 units wide.

SOLUTION:

Mark the front corner of the solid. Draw 2 units down, 6 units to the left, and 3 units to the right. Draw 6 units left from this last point. Then draw a rectangle for the top of the solid.

Draw segments 2 units down from each vertex for the vertical edges. Connect the appropriate vertices using dashed lines for the hidden edges.

ANSWER:

Mid-Chapter Quiz: Lessons 12-1 through 12-4

3. Use isometric dot paper to sketch a triangular prism 5 units high, with two sides of the base that are 4 units long and 3 units long.

SOLUTION:

Mark the front corner of the solid. Draw 5 units down, 4 units to the left, and 3 units to the right. Connect the other two vertices to complete the triangle.

Draw segments 5 units down from each vertex for the vertical edges. Connect the appropriate vertices using dashed lines for the hidden edges.

ANSWER:

Find the lateral area of each prism. Round to the nearest tenth if necessary.

4.

$$
\begin{aligned}
& \text { SOLUTION: } \\
& \begin{aligned}
L & =P h \\
& =(3 \times 6)(12) \\
& =18(12) \\
& =216
\end{aligned}
\end{aligned}
$$

ANSWER:
$216 \mathrm{~m}^{2}$
5.

SOLUTION:

Find the length of the third side of the triangle.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
7^{2}+8^{2} & =c^{2} \\
49+64 & =c^{2} \\
\sqrt{113} & =c
\end{aligned}
$$

Now find the lateral area.

$$
\begin{aligned}
L & =P h \\
& =(7+8+\sqrt{113})(10) \\
& =(15+\sqrt{113})(10) \\
& \approx 256.3
\end{aligned}
$$

ANSWER:
$256.3 \mathrm{~cm}^{2}$

Mid-Chapter Quiz: Lessons 12-1 through 12-4

6. MULTIPLE CHOICE Coaxial cable is used to transmit long-distance telephone calls, cable television programming, and other communications. A typical coaxial cable contains 22 copper tubes and has a diameter of 3 inches. What is the approximate lateral area of a coaxial cable that is 500 feet long?
A $16.4 \mathrm{ft}^{2}$
B $196.3 \mathrm{ft}^{2}$
C $294.5 \mathrm{ft}^{2}$
D $392.7 \mathrm{ft}^{2}$

SOLUTION:

3 inches is equivalent to $\frac{1}{4} \mathrm{ft}$, so the radius of the cable is $\frac{1}{8} \mathrm{ft}$.

$$
\begin{aligned}
L & =2 \pi r h \\
& =2 \pi\left(\frac{1}{8}\right)(500) \\
& =125 \pi \\
& \approx 392.7
\end{aligned}
$$

ANSWER:
D

Find the lateral area and surface area of each cylinder. Round to the nearest tenth if necessary.

7.

$$
\begin{aligned}
& \text { SOLUTION: } \\
& \begin{array}{l}
L=2 \pi r h \\
\quad=2 \pi(8)(6) \\
\\
=96 \pi \\
\\
\approx 301.6 \\
S
\end{array}=2 \pi r h+2 B \\
& =2 \pi(8)(6)+2 \pi(8)^{2} \\
& =96 \pi+128 \pi \\
& =224 \pi \\
&
\end{aligned}
$$

ANSWER:
$301.6 \mathrm{ft}^{2} ; 703.7 \mathrm{ft}^{2}$
8.

SOLUTION:

$$
\begin{aligned}
L & =2 \pi r h \\
& =2 \pi(13.75)(30) \\
& =825 \pi \\
& \approx 2591.8 \\
S & =2 \pi r h+2 B \\
& =2 \pi(13.75)(30)+2 \pi(13.75)^{2} \\
& =825 \pi+378.125 \pi \\
& =1203.125 \pi \\
& \approx 3779.7
\end{aligned}
$$

ANSWER:
$2591.8 \mathrm{yd}^{2} ; 3779.7 \mathrm{yd}^{2}$
9.

$$
\begin{aligned}
& \text { SOLUTION: } \\
& \begin{aligned}
L & =2 \pi r h \\
& =2 \pi(3)(14) \\
& =84 \pi \\
& \approx 263.9 \\
S & =2 \pi r h+2 B \\
& =2 \pi(3)(14)+2 \pi(3)^{2} \\
& =84 \pi+18 \pi \\
& =102 \pi \\
& \approx 320.4
\end{aligned}
\end{aligned}
$$

ANSWER:
$263.9 \mathrm{~m}^{2} ; 320.4 \mathrm{~m}^{2}$

Mid-Chapter Quiz: Lessons 12-1 through 12-4

10.

SOLUTION:

$$
\begin{aligned}
L & =2 \pi r h \\
& =2 \pi(9)(20) \\
& =360 \pi \\
& \approx 1131.0 \\
S & =2 \pi r h+2 B \\
& =2 \pi(9)(20)+2 \pi(9)^{2} \\
& =360 \pi+162 \pi \\
& =522 \pi \\
& \approx 1639.9
\end{aligned}
$$

ANSWER:
1131.0 in $^{2} ; 1639.9$ in 2
11. COLLECTIONS Soledad collects unique salt-and-pepper shakers. She inherited a pair of tetrahedral shakers from her mother.
a. Each edge of a shaker measures 3 centimeters. Make a sketch of one shaker.
b. Find the total surface area of one shaker.

SOLUTION:

a.

b. Each tetrahedral shaker is composed of 4 equilateral triangles. Rather than use the formula for the surface area of a pyramid $S=\frac{1}{2} P \ell+B$, it is easier for this figure to find the surface area by multiplying the area of one of the equilateral triangles by 4 . Since each triangle is equilateral, the height will bisect the base. Use the Pythagorean Theorem to find the height h of the triangle.

Mid-Chapter Quiz: Lessons 12-1 through 12-4

$$
\begin{aligned}
& h^{2}+1.5^{2}=3^{2} \\
& h^{2}=9-2.25 \\
& h=\sqrt{6.75} \\
& A=\frac{1}{2} b h \\
&=\frac{1}{2}(3)(\sqrt{6.75}) \\
&=\frac{3}{2} \sqrt{6.75}
\end{aligned}
$$

Now find the surface area S of the regular tetrahedron.

$$
\begin{aligned}
S & =4 B \\
& =4\left(\frac{3}{2} \sqrt{6.75}\right) \\
& \approx 15.6
\end{aligned}
$$

Therefore, the surface area of one shaker is about $15.6 \mathrm{~cm}^{2}$.

ANSWER:

a.

b. about $15.6 \mathrm{~cm}^{2}$

Mid-Chapter Quiz: Lessons 12-1 through 12-4

Find the surface area of each regular pyramid or cone. Round to the nearest tenth if necessary.
12.

SOLUTION:

For this cone, the radius r is 5 feet and the height h is 12 feet. Use the Pythagorean Theorem to find the slant height ℓ.

$$
\ell^{2}=5^{2}+12^{2}
$$

$$
\ell^{2}=25+144
$$

$$
\ell=\sqrt{169} \text { or } 13
$$

Now find the surface area of the cone.

$$
\begin{aligned}
S & =\pi r \ell+\pi r^{2} \\
& =\pi(5)(13)+\pi(5)^{2} \\
& =65 \pi+25 \pi \\
& =90 \pi \text { or about } 282.7
\end{aligned}
$$

Therefore, the surface area of the cone is about $282.7 \mathrm{ft}^{2}$.
ANSWER:
$282.7 \mathrm{ft}^{2}$

Mid-Chapter Quiz: Lessons 12-1 through 12-4

13.

SOLUTION:

The figure is a square-based pyramid with sides of 4 inches and a height of 9 inches. Use the Pythagorean Theorem to find the slant height ℓ.

$\ell^{2}=2^{2}+9^{2}$
$\ell^{2}=4+81$

$$
\ell=\sqrt{85}
$$

Find the area of the base B.

$$
\begin{aligned}
A & =s^{2} \\
& =(4)^{2} \text { or } 16
\end{aligned}
$$

So, the area of the base is $16 \mathrm{in}^{2}$.
Find the surface area S of the regular pyramid.

$$
\begin{aligned}
S & =\frac{1}{2} P \ell+B \\
& =\frac{1}{2}(4 \times 4)(\sqrt{85})+16 \\
& =8 \sqrt{85}+16 \\
& \approx 89.8
\end{aligned}
$$

Therefore, the surface area of the regular pyramid is about $89.8 \mathrm{in}^{2}$.
ANSWER:
89.8 in 2

Find the volume of each prism or cylinder. Round to the nearest tenth if necessary.
14.

$$
\begin{aligned}
& \text { SOLUTION: } \\
& \begin{aligned}
V & =B h \\
& =\frac{1}{2}(8)(15) \cdot 13 \\
& =60 \cdot 13 \\
& =780
\end{aligned}
\end{aligned}
$$

ANSWER:
$780 \mathrm{~mm}^{3}$
15.

$$
\begin{aligned}
& \text { SOLUTION: } \\
& \begin{aligned}
V & =B h \\
& =\pi r^{2} \cdot h \\
& =\pi(3)^{2}(9) \\
& \approx 254.5
\end{aligned}
\end{aligned}
$$

ANSWER:
$254.5 \mathrm{ft}^{3}$

Mid-Chapter Quiz: Lessons 12-1 through 12-4
16.

SOLUTION:
$V=B h$
$=2(6)(12)$
$=144$

ANSWER:
$144 \mathrm{~cm}^{3}$
17.

$$
\begin{aligned}
& \text { SOLUTION: } \\
& \begin{aligned}
V & =B h \\
& =\pi r^{2} \cdot h \\
& =\pi(7)^{2}(20) \\
& \approx 3078.8
\end{aligned}
\end{aligned}
$$

ANSWER:
$3078.8 \mathrm{~mm}^{3}$

Mid-Chapter Quiz: Lessons 12-1 through 12-4

18.

$$
\begin{aligned}
& \text { SOLUTION: } \\
& \begin{aligned}
V & =B h \\
& =\frac{1}{2}(3)(4) \cdot 12 \\
& =6 \cdot 12 \\
& =72
\end{aligned}
\end{aligned}
$$

ANSWER:

$72 \mathrm{~mm}^{3}$
19.

$$
\begin{aligned}
& \text { SOLUTION: } \\
& \begin{aligned}
V & =B h \\
& =(5)(6)(14) \\
& =420
\end{aligned}
\end{aligned}
$$

ANSWER:
$420 \mathrm{ft}^{3}$
20. METEOROLOGY The TIROS weather satellites were a series of weather satellites that carried television and infrared cameras and were covered by solar cells. If the cylinder-shaped body of a TIROS had a diameter of 42 inches and a height of 19 inches, what was the volume available for carrying instruments and cameras? Round to the nearest tenth.

SOLUTION:

The volume V of a cylinder is $V=B h$ or $V=\pi r^{2} h$, where B is the area of the base, h is the height of the cylinder, and r is the radius of the base.
$r=21 \mathrm{in}$. and $h=19 \mathrm{in}$.

$$
V=\pi r^{2} h=\pi(21)^{2}(19) \approx 26,323.4 \mathrm{in}^{3} .
$$

Therefore, about 26,323.4 in^{2} of space is available for carrying instruments and cameras.
ANSWER:
26,323.4 in ${ }^{2}$

