Mid-Chapter Quiz: Lessons 11-1 through 11-3

Find the perimeter and area of each parallelogram or triangle. Round to the nearest tenth if necessary.

1. 21 in .

$$
\begin{aligned}
& \text { SOLUTION: } \\
& \begin{aligned}
A & =b h \\
& =21(20) \\
& =420 \\
P & =2(25+21) \\
& =2(46) \\
& =92
\end{aligned}
\end{aligned}
$$

ANSWER:
92 in., $420 \mathrm{in}^{2}$

Mid-Chapter Quiz: Lessons 11-1 through 11-3

2.

SOLUTION:

Use the Pythagorean Theorem to find the height h, of the triangle.
$a^{2}+b^{2}=c^{2}$
$9^{2}+h^{2}=15^{2}$

$$
\begin{aligned}
h^{2} & =15^{2}-9^{2} \\
h^{2} & =225-81 \\
h & =\sqrt{144} \\
h & =12
\end{aligned}
$$

$$
A=\frac{1}{2} b h
$$

$$
=\frac{1}{2}(16)(12)
$$

$$
=96
$$

Use the Pythagorean Theorem to find the length of the third side of the triangle.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
16^{2}+12^{2} & =c^{2} \\
256+144 & =c^{2} \\
\sqrt{400} & =c \\
20 & =c
\end{aligned}
$$

The perimeter is $16+12+20=48 \mathrm{~cm}$.
ANSWER:
$48 \mathrm{~cm}, 96 \mathrm{~cm}^{2}$

Mid-Chapter Quiz: Lessons 11-1 through 11-3

3.

SOLUTION:

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =\frac{1}{2}(18)(21) \\
& =189
\end{aligned}
$$

Use the Pythagorean Theorem to find the length of the third side of the triangle.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
21^{2}+17^{2} & =c^{2} \\
441+289 & =c^{2} \\
\sqrt{730} & =c \\
27 & \approx c
\end{aligned}
$$

The perimeter is about $31+18+27=76 \mathrm{~m}$.
ANSWER:
$76 \mathrm{~m}, 189 \mathrm{~m}^{2}$

Mid-Chapter Quiz: Lessons 11-1 through 11-3

4.

SOLUTION:

Use the $30-60-90$ triangle to find the other lengths.

19

$$
\begin{aligned}
A & =b h \\
& =44[19 \sqrt{3}] \\
& \approx 1448.0
\end{aligned}
$$

The perimeter is $2(44+38)=164$.
ANSWER:
$164 \mathrm{ft}, 1448.0 \mathrm{ft}^{2}$

Mid-Chapter Quiz: Lessons 11-1 through 11-3

5. The height of a triangle is 8 inches more than its base. The area of the triangle is 104.5 square inches. Find the base and height.

SOLUTION:

Let x be the length of the base of the triangle in inches. The height is $x+8$ in.

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
104.5 & =\frac{1}{2}(x)(x+8) \\
209 & =x^{2}+8 x \\
0 & =x^{2}+8 x-209 \\
0 & =(x+19)(x-11) \\
x=-19 & \text { or } x=11
\end{aligned}
$$

Since x is a length it cannot be negative.
Therefore, the base of the triangle is 11 in . long and the height of the triangle is $11+8=19 \mathrm{in}$.
ANSWER:
$11 \mathrm{in} ., 19 \mathrm{in}$.
6. DESIGN A plaque is made with a rhombus in the middle. If the diagonals of the rhombus measure 7 inches and 9 inches, how much space is available for engraving text onto the award?

SOLUTION:

$$
\begin{aligned}
A & =\frac{1}{2} d_{1} d_{2} \\
& =\frac{1}{2}(7)(9) \\
& =31.5
\end{aligned}
$$

ANSWER:

$31.5 \mathrm{in}^{2}$

Mid-Chapter Quiz: Lessons 11-1 through 11-3

7. MULTIPLE CHOICE The area of a kite is 4 square feet. If the tail is to be 3 times longer than the kite's long diagonal, and the short diagonal measures 2 feet, how long should the kite tail be?
A 4 feet
B 6 feet
C 7 feet
D 12 feet

SOLUTION:

The area A of a kite is one half the product of the lengths of its diagonals, d_{1} and d_{2}.

$$
\begin{aligned}
\text { area } & =\frac{1}{2} \cdot d_{1} d_{2} \\
4 & =\frac{1}{2} \cdot 2 \cdot x \\
4 & =x
\end{aligned}
$$

Therefore, the length of the kite tail should be 3×4 or 12 ft , which is choice D .

ANSWER:

D
Find the area of each trapezoid, rhombus, or kite.
8.

SOLUTION:

$$
\begin{aligned}
A & =\frac{1}{2}\left(b_{1}+b_{2}\right) h \\
& =\frac{1}{2}(19+31)(20) \\
& =500
\end{aligned}
$$

ANSWER:
$500 \mathrm{in}^{2}$

Mid-Chapter Quiz: Lessons 11-1 through 11-3

9.

SOLUTION:

$$
\begin{aligned}
A & =\frac{1}{2} d_{1} d_{2} \\
& =\frac{1}{2}(8)(18) \\
& =72
\end{aligned}
$$

ANSWER:
$72 \mathrm{ft}^{2}$
10.

SOLUTION:

$$
\begin{aligned}
A & =\frac{1}{2} d_{1} d_{2} \\
& =\frac{1}{2}(22)(12) \\
& =132
\end{aligned}
$$

ANSWER:
$132 \mathrm{~mm}^{2}$

SOLUTION:

$$
\begin{aligned}
A & =\frac{1}{2}\left(b_{1}+b_{2}\right) h \\
& =\frac{1}{2}(10+14)(15) \\
& =180
\end{aligned}
$$

ANSWER:
$180 \mathrm{~cm}^{2}$

Mid-Chapter Quiz: Lessons 11-1 through 11-3

12. ARCHAEOLOGY The most predominant shape in Incan architecture is the trapezoid. The doorway pictured on page 789 is 3 feet wide at the top and 4 feet wide at the bottom. A person who is 5 feet 8 inches tall can barely pass through the doorway. How much fabric would be necessary to make a curtain for the doorway?

SOLUTION:

The doorway is in the shape of a trapezoid.
5 feet 8 inches ≈ 5.67 feet

$$
\begin{aligned}
A & =\frac{1}{2}\left(b_{1}+b_{2}\right) h \\
& =\frac{1}{2}(3+4)(5.67) \\
& \approx 19.8
\end{aligned}
$$

ANSWER:

$19.8 \mathrm{ft}^{2}$
13. ALGEBRA A sector of a circle has a central angle measure of 30° and radius r. Write an expression for the perimeter of the sector in terms of r.

SOLUTION:

$$
\begin{aligned}
\text { arclength } & =\frac{x}{360} \cdot 2 \pi r \\
& =\frac{30}{360}(2 \pi r) \\
& =\frac{1}{12}(2 \pi r) \\
& \approx \frac{1}{6} \pi r
\end{aligned}
$$

The perimeter of the sector is the sum of the length of the arc and twice the radius, so the perimeter of the sector is $\frac{1}{6} \pi r+2 r$ units.

ANSWER:
$\frac{1}{6} \pi r+2 r$

Mid-Chapter Quiz: Lessons 11-1 through 11-3

Find the area of each shaded sector. Round to the nearest tenth.
14.

SOLUTION:
$A=\frac{x}{360} \cdot \pi r^{2}$
$=\frac{52}{360} \pi(2)^{2}$
$=\frac{13}{90} \pi(4)$
≈ 1.8
ANSWER:
$1.8 \mathrm{~cm}^{2}$
15.

SOLUTION:

$$
\begin{aligned}
A & =\frac{x}{360} \cdot \pi r^{2} \\
& =\frac{275}{360} \pi(9.3)^{2} \\
& =\frac{55}{72} \pi(86.49) \\
& \approx 207.6
\end{aligned}
$$

ANSWER:
207.6 in 2

Mid-Chapter Quiz: Lessons 11-1 through 11-3

16.

SOLUTION:

$$
\begin{aligned}
A & =\frac{x}{360} \cdot \pi r^{2} \\
& =\frac{199}{360} \pi(2.4)^{2} \\
& \approx 10.0
\end{aligned}
$$

ANSWER:
$10.0 \mathrm{ft}^{2}$
17.

SOLUTION:
$A=\frac{x}{360} \cdot \pi r^{2}$
$=\frac{93}{360} \pi(15)^{2}$
$=\frac{93}{360} \pi(225)$
≈ 182.6

ANSWER:
$182.6 \mathrm{~mm}^{2}$

Mid-Chapter Quiz: Lessons 11-1 through 11-3

Find the indicated measure. Round to the nearest tenth.
18. The area of a circle is 52 square inches. Find the diameter.

$$
\begin{aligned}
& \text { SOLUTION: } \\
& A=\pi r^{2} \\
& 52=\pi r^{2} \\
& \frac{52}{\pi}=r^{2} \\
& \sqrt{\frac{52}{\pi}}=r \\
& 2 \sqrt{\frac{52}{\pi}}=d \\
& 8.1 \approx d
\end{aligned}
$$

ANSWER:

8.1 in.
19. Find the radius of a circle with an area of 104 square meters.

$$
\begin{aligned}
& \text { SOLUTION: } \\
& A=\pi r^{2} \\
& 104=\pi r^{2} \\
& \frac{104}{\pi}=r^{2} \\
& \sqrt{\frac{104}{\pi}}=r \\
& 5.8 \approx r \\
& \text { ANSWER: }
\end{aligned}
$$

5.8 m

Mid-Chapter Quiz: Lessons 11-1 through 11-3

20. FRUIT The diameter of the orange slice shown is 9 centimeters. If each of the orange's 10 sections are congruent, find the approximate area covered by 8 sections.

SOLUTION:

Since the orange is equally divided into 10 sections, each one will have an arc measure of $360 \div 10$ or 36 .
8 sections is $36(8)=288$.

$$
\begin{aligned}
A & =\frac{x}{360} \cdot \pi r^{2} \\
& =\frac{288}{360} \pi(4.5)^{2} \\
& =\frac{8}{10} \pi(20.25) \\
& \approx 50.9
\end{aligned}
$$

ANSWER:
$50.9 \mathrm{~cm}^{2}$

