Find the perimeter and area of each parallelogram or triangle. Round to the nearest tenth if necessary.

ANSWER:

92 in., 420 in²

SOLUTION:

Use the Pythagorean Theorem to find the height h, of the triangle.

$$a^{2} + b^{2} = c^{2}$$

$$9^{2} + h^{2} = 15^{2}$$

$$h^{2} = 15^{2} - 9^{2}$$

$$h^{2} = 225 - 81$$

$$h = \sqrt{144}$$

$$h = 12$$

$$A = \frac{1}{2}bh$$

$$= \frac{1}{2}(16)(12)$$

$$= 96$$

Use the Pythagorean Theorem to find the length of the third side of the triangle.

$$a^{2}+b^{2}=c^{2}$$

$$16^{2}+12^{2}=c^{2}$$

$$256+144=c^{2}$$

$$\sqrt{400}=c$$

$$20=c$$

The perimeter is 16 + 12 + 20 = 48 cm.

ANSWER:

48 cm, 96 cm²

Use the Pythagorean Theorem to find the length of the third side of the triangle.

$$a^{2}+b^{2}=c^{2}$$

$$21^{2}+17^{2}=c^{2}$$

$$441+289=c^{2}$$

$$\sqrt{730}=c$$

$$27\approx c$$

The perimeter is about 31 + 18 + 27 = 76 m.

ANSWER: 76 m, 189 m²

eSolutions Manual - Powered by Cognero

SOLUTION:

Use the 30-60-90 triangle to find the other lengths.

The perimeter is 2(44 + 38) = 164.

ANSWER:

164 ft, 1448.0 ft²

Mid-Chapter Quiz: Lessons 11-1 through 11-3

5. The height of a triangle is 8 inches more than its base. The area of the triangle is 104.5 square inches. Find the base and height.

SOLUTION:

Let *x* be the length of the base of the triangle in inches. The height is x + 8 in.

$$A = \frac{1}{2}bh$$

$$104.5 = \frac{1}{2}(x)(x+8)$$

$$209 = x^{2} + 8x$$

$$0 = x^{2} + 8x - 209$$

$$0 = (x+19)(x-11)$$

$$= -19 \text{ or } x = 11$$

Since *x* is a length it cannot be negative.

Therefore, the base of the triangle is 11 in. long and the height of the triangle is 11 + 8 = 19 in.

ANSWER:

х

11 in., 19 in.

6. **DESIGN** A plaque is made with a rhombus in the middle. If the diagonals of the rhombus measure 7 inches and 9 inches, how much space is available for engraving text onto the award?

SOLUTION: $A = \frac{1}{2}d_1d_2$ $= \frac{1}{2}(7)(9)$ = 31.5

ANSWER:

31.5 in²

Mid-Chapter Quiz: Lessons 11-1 through 11-3

7. **MULTIPLE CHOICE** The area of a kite is 4 square feet. If the tail is to be 3 times longer than the kite's long diagonal, and the short diagonal measures 2 feet, how long should the kite tail be?

A 4 feet

B 6 feet

C 7 feet

D 12 feet

SOLUTION:

The area A of a kite is one half the product of the lengths of its diagonals, d_1 and d_2 .

area = $\frac{1}{2} \cdot d_1 d_2$ $4 = \frac{1}{2} \cdot 2 \cdot x$ 4 = x

Therefore, the length of the kite tail should be 3×4 or 12 ft, which is choice D.

ANSWER:

D

Find the area of each trapezoid, rhombus, or kite.

SOLUTION:

$$A = \frac{1}{2}(b_1 + b_2)h$$

= $\frac{1}{2}(19 + 31)(20)$
= 500

ANSWER:

500 in²

ANSWER:

 72 ft^2

ANSWER:

 132 mm^2

SOLUTION:

$$A = \frac{1}{2}(b_1 + b_2)h$$

= $\frac{1}{2}(10 + 14)(15)$
= 180

ANSWER: 180 cm²

12. **ARCHAEOLOGY** The most predominant shape in Incan architecture is the trapezoid. The doorway pictured on page 789 is 3 feet wide at the top and 4 feet wide at the bottom. A person who is 5 feet 8 inches tall can barely pass through the doorway. How much fabric would be necessary to make a curtain for the doorway?

SOLUTION:

The doorway is in the shape of a trapezoid.

5 feet 8 inches \approx 5.67 feet

$$A = \frac{1}{2}(b_1 + b_2)h$$

= $\frac{1}{2}(3 + 4)(5.67)$
 ≈ 19.8

ANSWER:

$$19.8 \, {\rm ft}^2$$

13. ALGEBRA A sector of a circle has a central angle measure of 30° and radius *r*. Write an expression for the perimeter of the sector in terms of *r*.

SOLUTION:

$$arclength = \frac{x}{360} \cdot 2\pi r$$

 $= \frac{30}{360}(2\pi r)$
 $= \frac{1}{12}(2\pi r)$
 $\approx \frac{1}{6}\pi r$

The perimeter of the sector is the sum of the length of the arc and twice the radius, so the perimeter of the sector is $\frac{1}{6}\pi r + 2r$ units.

ANSWER:

 $\frac{1}{6}\pi r+2r$

Find the area of each shaded sector. Round to the nearest tenth.

SOLUTION:

$$A = \frac{x}{360} \cdot \pi r^2$$
$$= \frac{52}{360} \pi (2)^2$$
$$= \frac{13}{90} \pi (4)$$
$$\approx 1.8$$

ANSWER:

 1.8 cm^2

SOLUTION:

$$A = \frac{x}{360} \cdot \pi r^2$$

= $\frac{275}{360} \pi (9.3)^2$
= $\frac{55}{72} \pi (86.49)$
 ≈ 207.6

ANSWER:

 207.6 in^2

R

SOLUTION:

$$A = \frac{x}{360} \cdot \pi r^{2}$$

= $\frac{93}{360} \pi (15)^{2}$
= $\frac{93}{360} \pi (225)$
 ≈ 182.6

ANSWER:

182.6 mm²

Find the indicated measure. Round to the nearest tenth.

18. The area of a circle is 52 square inches. Find the diameter.

SOLUTION:

$$A = \pi r^{2}$$

$$52 = \pi r^{2}$$

$$\frac{52}{\pi} = r^{2}$$

$$\sqrt{\frac{52}{\pi}} = r$$

$$2\sqrt{\frac{52}{\pi}} = d$$

$$8.1 \approx d$$

ANSWER:

8.1 in.

19. Find the radius of a circle with an area of 104 square meters.

SOLUTION:

$$A = \pi r^{2}$$

$$104 = \pi r^{2}$$

$$\frac{104}{\pi} = r^{2}$$

$$\sqrt{\frac{104}{\pi}} = r$$

$$5.8 \approx r$$

ANSWER:

5.8 m

20. **FRUIT** The diameter of the orange slice shown is 9 centimeters. If each of the orange's 10 sections are congruent, find the approximate area covered by 8 sections.

SOLUTION: Since the orange is equally divided into 10 sections, each one will have an arc measure of $360 \div 10$ or 36.

8 sections is 36(8) = 288.

$$A = \frac{x}{360} \cdot \pi r^{2}$$

= $\frac{288}{360} \pi (4.5)^{2}$
= $\frac{8}{10} \pi (20.25)$
\approx 50.9

ANSWER: 50.9 cm²