Mid-Chapter Quiz: Lessons 10-1 through 10-4

Refer to $\odot A$.

1. Name the circle.

SOLUTION:

The center of the circle is A. Therefore, the circle is $\odot A$.
ANSWER:
$\odot A$
2. Name a diameter.

SOLUTION:
$\overline{E C}$; since $\overline{E C}$ is a chord that passes through the center, it is a diameter.

ANSWER:
$\overline{E C}$
3. Name a chord that is not a diameter.

SOLUTION:
$\overline{E D}$; the chord $\overline{E D}$ does not pass through the center of the circle, so it is not a diameter.
ANSWER:
$\overline{E D}$

Mid-Chapter Quiz: Lessons 10-1 through 10-4

4. BICYCLES A bicycle has tires that are 24 inches in diameter.
a. Find the circumference of one tire.
b. How many inches does the tire travel after 100 rotations?

SOLUTION:

a.

$$
\begin{aligned}
C & =\pi d & & \text { CircumferenceFormula } \\
& =\pi(24) & & d=24 \\
& \approx 75.4 & & \text { Usea calculator. }
\end{aligned}
$$

Therefore, the circumference of one tire is about 75.4 inches.
b.

Distance $=$ (number of rotations $)\left(C_{\text {tire }}\right)$

$$
\begin{array}{ll}
=(100)(75.4) & \text { Substitution } \\
=7540 & \text { Multiply }
\end{array}
$$

Therefore, the tire travels about 7540 inches in 100 rotations.
ANSWER:
a. 75.4 in .
b. 7540 in.

Find the diameter and radius of a circle with the given circumference. Round to the nearest hundredth. 5. $C=23 \mathrm{~cm}$

SOLUTION:

Use the circumference to find the diameter.

$$
\begin{aligned}
C & =\pi d & & \text { Circumference Formula } \\
23 & =\pi d & & \text { Substitution } \\
\frac{23}{\pi} & =d & & \text { Divide each side by } \pi
\end{aligned}
$$

$7.32 \approx d$ Use a calculator.
Therefore, the diameter is about 7.32 centimeters.
The radius is half the diameter. So, the radius of the circle is $\frac{1}{2}(7.32)$ or about 3.66 centimeters.
ANSWER:
$3.66 \mathrm{~cm} ; 7.32 \mathrm{~cm}$

Mid-Chapter Quiz: Lessons 10-1 through 10-4

6. $C=78 \mathrm{ft}$

SOLUTION:

Use the circumference to find the diameter.

$$
\begin{aligned}
C & =\pi d & & \text { Circumference Formula } \\
78 & =\pi d & & \text { Substitution } \\
\frac{78}{\pi} & =d & & \text { Divide each side by } \pi \\
24.83 & \approx d & & \text { Use a calculator. }
\end{aligned}
$$

Therefore, the diameter is about 24.83 feet.
The radius is half the diameter. So, the radius of the circle is $\frac{1}{2}(24.83)$ or about 12.41 feet.
ANSWER:
$12.41 \mathrm{ft} ; 24.83 \mathrm{ft}$
7. MULTIPLE CHOICE Find the length of $\overparen{B C}$.

A 18°
B 2.20 cm
C 168°
D 30.79 cm

SOLUTION:

The minor arc adjacent to arc $B C$ has a measure of 168 , since it is equal to its related central angle. This arc and arc $B C$ form a semicircle.

$$
\begin{aligned}
m(\operatorname{arc} B C)+168 & =180 & & \text { ArcAddition Postulate } \\
m(\operatorname{arc} B C) & =12 & & \text { Subtract } 168 \text { from each side } .
\end{aligned}
$$

The diameter is 21 centimeters, so the radius is $\frac{1}{2}(21)$ or 10.5 centimeters.
Use $m=12$ and $r=10.5$ to find the length of arc $B C$.

$$
\begin{aligned}
\ell & =\frac{x}{360} 2 \pi r & & \text { ArcLength Equation } \\
& =\frac{12}{360} 2 \pi(10.5) & & m=12 ; r=10.5 \\
& =\frac{252 \pi}{360} & & \text { Simplify. } \\
& \approx 2.20 & & \text { Use a calculator. }
\end{aligned}
$$

Therefore, the lenth of $\operatorname{arc} B C$ is about 2.20 centimeters.
So, the correct choice is B.

ANSWER:

B

Mid-Chapter Quiz: Lessons 10-1 through 10-4

8. MOVIES The movie reel shown below has a diameter of 14.5 inches.

a. Find $m \widehat{A D C}$.
b. Find the length of $\overparen{A D C}$.

SOLUTION:

a. The measure of an arc is equal to its related central angle. Since the central angle related to $\operatorname{arc} A D C$ is 240 , the measure of $\operatorname{arc} A D C$ is 240 .
b. Use $m=240$ and $r=\frac{1}{2}(14.5)$ or 7.25 to find the length of $\operatorname{arc} A D C$.

$$
\begin{aligned}
\ell & =\frac{x}{360} 2 \pi r & & \text { ArcLength Equation } \\
& =\frac{240}{360} 2 \pi(7.25) & & m=240 ; r=7.25 \\
& =\frac{3480 \pi}{360} & & \text { Simplify } \\
& \approx 30.4 & & \text { Multiply each sideby } \frac{360}{680 \pi} .
\end{aligned}
$$

Therefore, the length of $\operatorname{arc} A D C$ is about 30.4 inches.
ANSWER:
a. 240
b. 30.4 in.

Find the value of x.

9.

SOLUTION:

The sum of the measures of the arcs of a circle is 360 .
$x+110+x+110=360$ Sum of arcs of a circle is 360 .

$$
\begin{aligned}
2 x+220 & =360 & & \text { Simplify } \\
2 x & =140 & & \text { Subtract } 220 \text { from each side. } \\
x & =70 & & \text { Div ide each sideby } 2 .
\end{aligned}
$$

ANSWER:
70

Mid-Chapter Quiz: Lessons 10-1 through 10-4

10. In $\odot B, C E=13.5$. Find $B D$. Round to the nearest hundredth.

SOLUTION:

Since $\overline{B F}$ is a radius and is perpendicular to the chord $\overline{C E}$, it bisects $\overline{C E}$. So, $C D=\frac{1}{2}(13.5)$ or 6.75.
Draw radius $\overline{B C}$ to complete right triangle $B C D$. Use the Pythagorean Theorem to find $B D$.

$$
\begin{aligned}
B D^{2}+C D^{2} & =B C^{2} & & \text { Pythagorean Theorem } \\
B D^{2}+6.75^{2} & =8^{2} & & C D=6.75, B C=A B=8 \\
B D^{2}+45.5625 & =64 & & \text { Simplify } \\
B D^{2} & =18.4375 & & \text { Subtract } 45.5625 \text { from each side. } \\
B D & \approx 4.29 & & \text { Take thepositiv esquareroot of each side. }
\end{aligned}
$$

ANSWER:
4.29
11. The two circles shown are congruent. Find x and the length of the chord.

SOLUTION:

In the same circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent. Here, the measure of the minor arc in the second circle is $360-284$ or 76 . So, the minor arcs in the two circles are congruent. Then, the corresponding chords are also congruent.l

$$
3 x-7=2 x+9 \quad \text { Equal arcs cut equal chords. }
$$

$$
x=16 \quad \text { Add } 7 \text { and }-2 x \text { to each side. }
$$

Use the value of x to find the length of each chord.
$3 x-7=3(16)-7$ or 41
Therefore, the value of x is 16 and the length of each chord is 41 .
ANSWER:
$x=16 ; 41$

Mid-Chapter Quiz: Lessons 10-1 through 10-4

Find each measure.

12. $m \overparen{T U}$

SOLUTION:

$\angle T V U$ is an inscribed angle.

$$
\begin{aligned}
m \angle T V U & =\frac{1}{2}[m(\operatorname{arcTU})] & & \text { Theorem } 10.6 \\
23 & =\frac{1}{2}[m(\operatorname{arcTU})] & & \text { Substitution } \\
46 & =m(\operatorname{arcTU}) & & \text { Multiply each sideby } 2 .
\end{aligned}
$$

Therefore, the measure of $\operatorname{arc} T U$ is 46 .
ANSWER:
46
13. $m \angle A$

SOLUTION:

$\angle A$ is an inscribed angle.

$$
\begin{aligned}
m \angle A & =\frac{1}{2}[m(\operatorname{arc} B C)] & & \text { Theorem } 10.6 \\
& =\frac{1}{2}[170] & & \text { Substitution } \\
& =85 & & \text { Multiply } .
\end{aligned}
$$

Therefore, the measure of $\angle A$ is 85 .
ANSWER:
85

Mid-Chapter Quiz: Lessons 10-1 through 10-4

14. MULTIPLE CHOICE Find x.

F 1.8
G 5
H 46
J 90

SOLUTION:

If two inscribed angles of a circle intercept the same arc or congruent arcs, then the angles are congruent.

$$
m \angle E=m \angle F \quad \text { Inscribed anglesthat intercept the same arc are congruent. }
$$

$$
\begin{aligned}
8 x+6 & =10 x-4 & & \text { Substitution } \\
10 & =2 x & & \text { Add }-8 x \text { and } 4 \text { to each side. } . \\
5 & =x & & \text { Div ide each side by } 2 .
\end{aligned}
$$

Therefore, the correct choice is G.
ANSWER:
G
15. If a square with sides of 14 inches is inscribed in a circle, what is the diameter of the circle?

SOLUTION:

When a square is inscribed in a circle, each diagonal of the square will be a diameter. Use the Pythagorean Theorem to find the length of a diagonal.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} & & \text { Pythagorean Theorem } \\
c^{2} & =14^{2}+14^{2} & & \text { Substitution } \\
c^{2} & =392 & & \text { Simplify. } \\
c & =\sqrt{392} & & \text { Take the positive squareroot of each side. } \\
c & =\sqrt{392} & & \text { Take thepositive squareroot of each side. }
\end{aligned}
$$

Therefore, the diameter of the circle is $14 \sqrt{2}$ inches.
ANSWER:
$14 \sqrt{2}$ in.

