Right Triangle Practice A Pictures / Diagrams are Not drawn to Scale.

The area of a right triangle is 60 square inches

1. The area of a right triangle is 60 square inches and one leg is 15 inches.

Determine the length of the hypotenuse.

2. Find y

$$1^{2} + (\sqrt{2})^{2} = y^{2}$$
 $1 + 2 = y^{2}$
 $3 = y^{2}$
 $\sqrt{3} = y$

h 15

$$8^{2}+15^{2}=C^{2}$$

 $64+225=C^{2}$
 $289=C^{2}$
 $17=C$

3. If $\overline{BD} = 2\sqrt{2}$, find \overline{AB}

45 - 45 - 90 $m m \sqrt{2}$ 30 - 60 - 90 $m m \sqrt{3} 2m$ $X = 2\sqrt{3} - 2 2$

4. Find x

 $tan \theta_1 = \frac{3}{4}$ $\theta_1 \approx 30.87^{\circ}$ $tan \theta_2 = \frac{4}{3}$ $\theta_2 \approx 53.13$

complementary [X=5\z]

5. In $\triangle ABC$, $m \angle B = 90^{\circ}$ $\overline{BD} \perp \overline{AC} \text{ and } \overline{DE} \perp \overline{BC}$ $\overline{AB} = 5 \text{ and } \overline{AD} = 3$ Find \overline{DE} $\boxed{DE} = 10/5$

- $\frac{1}{3} \frac{1}{5} \frac{1}{4} = \frac{10}{3} \frac{1}{3} \frac{1}{5} = \frac{10}{3} \frac{1}{3} \frac{1}{3} = \frac{10}{3} = \frac{10}$
- $\frac{250}{9} = 2^{2}$ $\frac{44}{9} = 2^{2}$ $\frac{12}{5} = m$ $\frac{12}{5} =$

Three congruent squares are drawn as shown, 6. in which the midpoints of two sides of the bottom squares are vertices of the top square. If AB = 100, what is the area of one of these squares?

ABCD is a square with $AB = 12\sqrt{2}$ inches. Each of the 7. inner figures is a square formed by connecting midpoints. What is the length of a side of the innermost square shown?

A=4 (1/2)9X9J3)

В

The perimeter of a rhombus containing a 120° angle 8. is 72 cm. Determine the area of the rhombus.

Given $m\angle CEB = 45^{\circ}$, EC = 2. Determine the sum 9. of the perimeters of $\triangle ABE$ and $\triangle EDC$.

SUM =
$$252+2+4+252 = 1$$

an altitude. $AD = 5$.

10. Given right $\triangle ABC$, with AD as an altitude, AD = 5, $m \angle DAB = 30$, determine AC, AB, BD, and DC.

