Find each measure. Assume that segments that appear to be tangent are tangent.

 $m \angle 1$

SOLUTION:

$$m \angle 1 = \frac{1}{2} [m(\operatorname{arc} AD) + m(\operatorname{arc} BC)]$$
 Theorem10.12
 $= \frac{1}{2} [134 + 86]$ Substitution
 $= \frac{1}{2} (220) \text{ or } 110$ Simplify.

ANSWER:

110

 $2. m\widehat{TS}$

SOLUTION:

$$126 = \frac{1}{2} [m(\operatorname{arc} TS) + m(\operatorname{arc} QR)] \qquad \text{Theorem} 10.12$$

252 = m(arcTS) + 86 Substitution and multiply each side by 2.

 $144 = m(\operatorname{arc} TS)$ Subtract 86 from each side.

So, the measure of arc TS is 144.

ANSWER:

3. *m*∠2

SOLUTION:

$$m \angle 2 = \frac{1}{2} [m(\text{arc}BC)]$$
 Theorem10.13
= $\frac{1}{2} [146]$ Substitution
= 73 Simplify.

ANSWER:

73

4. $m \angle H$

SOLUTION:

$$m \angle H = \frac{1}{2} [m(\operatorname{arc}KF) - m(\operatorname{arc}JG)]$$
 Theorem 10.14
 $= \frac{1}{2} [88 - 26]$ Substitution
 $= \frac{1}{2} (62)$ Simplify.
 $= 31$ Multiply.

ANSWER:

5. mQTS

SOLUTION:

$$m \angle R = \frac{1}{2} [m(\text{arc}QTS) - 106]$$
 Theorem10.14

$$71 = \frac{1}{2} [m(\text{arc}QTS) - 106]$$
 Substitution

$$142 = m(\operatorname{arc} QTS) - 106$$
 Multiply each side by 2.

$$248 = m(\text{arc}QTS)$$
 Add 106 to each side.

So, the measure of arc *QTS* is 248.

ANSWER:

248

6. \widehat{mLP}

SOLUTION:

$$m \angle M = \frac{1}{2} [m(\operatorname{arc} LP) - m(\operatorname{arc} NL)]$$
 Theorem 10.14

$$36 = \frac{1}{2}[m(\operatorname{arc}LP) - 78]$$
 Substitution

$$72 = m(\operatorname{arc} LP) - 78$$
 Multiply each side by 2.

150 =
$$m(arcLP)$$
 Add 78to both sides.

So, the measure of arc *LP* is 150.

ANSWER:

7. **STUNTS** A ramp is attached to the first of several barrels that have been strapped together for a circus motorcycle stunt as shown. What is the measure of the angle the ramp makes with the ground?

SOLUTION:

Let x be the measure of the angle the ramp makes with the ground which is formed by two intersecting tangents to the circle formed by the barrel. One arc has a measure of 165. The other arc is the major arc with the same endpoints, so its measure is 360 - 165 or 195.

$$x = \frac{1}{2}(195 - 165)$$
 Theorem10.14
= $\frac{1}{2}(30)$ Substitution
= 15 Multiply.

Therefore, the measure of the angle the ramp makes with the ground is 15.

ANSWER:

15

Find each measure. Assume that segments that appear to be tangent are tangent.

8. *m*∠3

SOLUTION:

$$m \angle 3 = \frac{1}{2} [m(\operatorname{arc} EF) + m(\operatorname{arc} DG)]$$
 Theorem 10.12
 $= \frac{1}{2} [90 + 74]$ Substitution
 $= \frac{1}{2} (164) \text{ or } 82$ Simplify.

ANSWER:

9. *m*∠4

SOLUTION:

$$m \angle 4 = \frac{1}{2} [m(\operatorname{arc}RU) + m(\operatorname{arc}ST)]$$
 Theorem10.12
 $= \frac{1}{2} [92 + 51]$ Substitution
 $= \frac{1}{2} (141) \text{ or } 71.5$ Simplify.

ANSWER:

71.5

10. *m∠JMK*

SOLUTION:

$$m \angle JMH = \frac{1}{2}[m(\operatorname{arc} LK) + m(\operatorname{arc} JH)]$$
 Theorem10.12
 $= \frac{1}{2}[77 + 79]$ Substitution
 $= \frac{1}{2}(156) \text{ or } 78$ Simplify.

 $\angle JMK$ and $\angle HMJ$ form a linear pair.

 $m \angle JMK + m \angle HMJ = 180$ Sum of the angles in a linear pair is 180.

 $m \angle JMK + 78 = 180$ Substitution $m \angle JMK = 102$ Use a calculator.

ANSWER:

11. $m\widehat{RQ}$

SOLUTION:

$$51 = \frac{1}{2}[m(\operatorname{arc}NP) + m(\operatorname{arc}RQ)] \qquad \text{Theorem10.12}$$

$$51 = \frac{1}{2} [74 + m(\operatorname{arc} RQ)]$$
 Substitution

$$102 = 74 + m(\operatorname{arc} RQ)$$
 Multiply each side by 2.

$$28 = m(\operatorname{arc} RQ)$$
 Subtract 74 from each side.

Therefore, the measure of arc RQ is 28.

ANSWER:

28

12. *m∠K*

SOLUTION:

$$m \angle K = \frac{1}{2}(194)$$
 Theorem 10.13
= 97 Multiply.

ANSWER:

13. *mPM*

SOLUTION:

$$m \angle M = \frac{1}{2} [m(\operatorname{arc}PM)]$$
 Theorem10.13

$$72 = \frac{1}{2}[m(\operatorname{arc}PM)]$$
 Substitution

$$144 = m(\operatorname{arc}PM)$$

Multiply each side by 2.

So, the measure of arc *PM* is 144.

ANSWER:

144

14. *m∠ABD*

SOLUTION:

Arc BD and arc BCD are a minor and major arc that share the same endpoints.

 $m(\operatorname{arc}BCD) = 360 - m(\operatorname{arc}BD)$ Measure of major arc equals 360 minus the minor arc.

$$m \angle ABD = \frac{1}{2} [m (arcBCD)]$$
 Theorem10.13

$$= \frac{1}{2}[206]$$
 Substitution
= 103 Simplify.

ANSWER:

15. *m∠DAB*

SOLUTION:

By Theorem 10.13, $m \angle DAB = \frac{1}{2} \left(\widehat{mACD} \right)$.

$$m \angle DAB = \frac{1}{2} (360 - 110)$$
$$= \frac{1}{2} (250)$$
$$= 125$$

ANSWER:

125

16. mGJF

SOLUTION:

By Theorem 10.13, $82 = \frac{1}{2} (m\widehat{GF})$.

Solve for \widehat{mGF} .

$$\widehat{mGF} = 164$$

We know that $\widehat{mGJF} = 360 - \widehat{mGF}$.

Substitute.

$$\widehat{mGJF} = 360 - 164$$
$$= 196$$

ANSWER:

17. **SPORTS** The multi-sport field shown includes a softball field and a soccer field. If $\widehat{mABC} = 200$, find each measure.

a. m∠ACE

b. $m \angle ADC$

SOLUTION:

a. By Theorem 10.13, $m \angle ACE = \frac{1}{2} \left(\widehat{mABC} \right)$.

Substitute.

$$m\angle ACE = \frac{1}{2}(200)$$

Simplify.

$$m\angle ACE = 100$$

b. By Theorem 10.14, $m\angle ADC = \frac{1}{2} \left(\widehat{mABC} - \widehat{mAC} \right)$.

Substitute.

$$m\angle ADC = \frac{1}{2}(200 - 160)$$

Simplify.

$$m\angle ADC = \frac{1}{2}(40)$$

$$m\angle ADC = 20$$

ANSWER:

a. 100

b. 20

CCSS STRUCTURE Find each measure.

18. *m∠A*

SOLUTION:

By Theorem 10.14,
$$m\angle A = \frac{1}{2} \left(m\widehat{BDC} - m\widehat{BC} \right)$$
.

Substitute.

$$m\angle A = \frac{1}{2}((360-99)-99)$$

Simplify.

$$m \angle A = \frac{1}{2} (261 - 99)$$

= $\frac{1}{2} (162)$
= 81

ANSWER:

19. *m∠W*

SOLUTION:

By Theorem 10.14, $m \angle W = \frac{1}{2} \left(m \widehat{XZY} - m \widehat{XY} \right)$.

Substitute.

$$m \angle W = \frac{1}{2} ((360 - 106) - 106)$$

Simplify.

$$m \angle W = \frac{1}{2} (254 - 106)$$
$$= \frac{1}{2} (148)$$
$$= 74$$

ANSWER:

20. m(arc JNM)

SOLUTION:

$$m \angle K = \frac{1}{2} [m(\operatorname{arc} JNM) - m(\operatorname{arc} JL)]$$

47 =
$$\frac{1}{2}$$
[$m(\text{arc}JNM) - 111$]

$$94 = m(\operatorname{arc} JNM) - 111$$

$$205 = m(\operatorname{arc} JNM)$$

So, the measure of arc *JNM* is 205.

Theorem 10.14

Substitution

Multiply each side by 2.

Add 111 to both sides.

ANSWER:

205

21. $m\widehat{XY}$

SOLUTION:

By Theorem 10.14, $m \angle W = \frac{1}{2} \left(m \widehat{XY} - 103 \right)$.

Substitute.

$$41 = \frac{1}{2} \left(m\widehat{XY} - 103 \right)$$

Simplify.

$$82 = m\widehat{XY} - 103$$

$$\widehat{mXY} = 185$$

ANSWER:

22. *m∠R*

SOLUTION:

By Theorem 10.14, $m \angle R = \frac{1}{2} \left(m\widehat{SQ} - m\widehat{UT} \right)$.

Substitute.

$$m\angle R = \frac{1}{2}(103 - 43)$$

Simplify.

$$m\angle R = \frac{1}{2}(60)$$

$$m\angle R = 30$$

ANSWER:

30

23. $m\widehat{SU}$

SOLUTION:

By Theorem 10.14, $m \angle R = \frac{1}{2} \left(m \widehat{TV} - m \widehat{SU} \right)$.

Substitute.

$$23 = \frac{1}{2} \left(68 - m\widehat{SU} \right)$$

Solve for \widehat{mSU} .

$$46 = 68 - m\widehat{SU}$$

$$\widehat{mSU} = 22$$

ANSWER:

24. **JEWELRY** In the circular necklace shown, A and B are tangent points. If x = 260, what is y?

SOLUTION:

By Theorem 10.14, $y = \frac{1}{2} \left(x - m\widehat{AB} \right)$.

Substitute.

$$y = \frac{1}{2} (260 - 100)$$

Simplify.

$$y = \frac{1}{2}(160)$$

$$y = 80$$

ANSWER:

25. **SPACE** A satellite orbits above Earth's equator. Find *x*, the measure of the planet's arc, that is visible to the satellite.

SOLUTION:

The measure of the visible arc is x and the measure of the arc that is not visible is 360 - x. Use Theorem 10.14 to find the value of x.

12 =
$$\frac{1}{2}[(360 - x) - x]$$
 Theorem 10.14

$$12 = \frac{1}{2}[360 - 2x]$$
 Simplify.

$$12 = 180 - x Multiply.$$

$$x = 168$$
 Add x and subtract 12 from each side.

Therefore, the measure of the planet's arc that is visible to the satellite is 168.

ANSWER:

168

ALGEBRA Find the value of x.

26.

SOLUTION:

By Theorem 10.14, $4x = \frac{1}{2}((9x+26)-35)$.

Solve for x.

$$4x = \frac{1}{2}((9x+26)-35)$$

$$4x = \frac{1}{2}(9x + 26 - 35)$$

$$4x = \frac{1}{2}(9x - 9)$$

$$8x = 9x - 9$$

$$x = 9$$

ANSWER:

27.

SOLUTION:

By Theorem 10.14, $3 = \frac{1}{2} ((5x-6) - (4x+8))$.

Solve for x.

$$3 = \frac{1}{2} (5x - 6 - 4x - 8)$$

$$3 = \frac{1}{2}(x-14)$$

$$6 = x - 14$$

$$x = 20$$

ANSWER:

20

28.

SOLUTION:

By Theorem 10.14, $2x = \frac{1}{2}((9x-1)-(94))$.

Solve for x.

$$2x = \frac{1}{2}((9x-1)-(94))$$

$$2x = \frac{1}{2}(9x - 1 - 94)$$

$$2x = \frac{1}{2}(9x - 95)$$

$$4x = 9x - 95$$

$$5x = 95$$

$$x = 19$$

ANSWER:

- 29. **PHOTOGRAPHY** A photographer frames a carousel in his camera shot as shown so that the lines of sight form tangents to the carousel.
 - **a.** If the camera's viewing angle is 35°, what is the arc measure of the carousel that appears in the shot?
 - **b.** If you want to capture an arc measure of 150° in the photograph, what viewing angle should be used?

SOLUTION:

a. Let x be the measure of the carousel that appears in the shot.

By Theorem 10.14,
$$35 = \frac{1}{2} (360 - x - (x))$$
.

Solve for x.

$$35 = \frac{1}{2} \big(360 - 2x \big)$$

$$70 = 360 - 2x$$

$$2x = 290$$

$$x = 145$$

b. Let *x* be the measure of the camera's viewing angle.

By Theorem 10.14,
$$x = \frac{1}{2} ((360 - 150) - (150))$$
.

Solve for x.

$$x = \frac{1}{2} (210 - 150)$$

$$=\frac{1}{2}(60)$$

=30

ANSWER:

- **a.** 145
- **b.** 30

CCSS ARGUMENTS For each case of Theorem 10.14, write a two-column proof.

30. Case 1

Given: secants \overrightarrow{AD} and \overrightarrow{AE}

Prove: $m \angle A = \frac{1}{2} \left(m\widehat{DE} - m\widehat{BC} \right)$

SOLUTION:

Statements (Reasons)

1. \overrightarrow{AD} and \overrightarrow{AE} are secants to the circle. (Given)

2. $m\angle DCE = \frac{1}{2}m\widehat{DE}$, $m\angle ADC = \frac{1}{2}m\widehat{BC}$ (The measure of an inscribed $\angle = \frac{1}{2}$ the measure of its intercepted arc.)

3. $m\angle DCE = m\angle ADC + m\angle A$ (Exterior $\angle s$ Theorem)

4. $\frac{1}{2} m\widehat{DE} = \frac{1}{2} m\widehat{BC} + m \angle A$ (Substitution)

5. $\frac{1}{2}m\widehat{DE} - \frac{1}{2}m\widehat{BC} = m\angle A$ (Subtraction Prop.)

6. $\frac{1}{2} \left(m\widehat{DE} - m\widehat{BC} \right) = m \angle A$ (Distributive Prop.)

ANSWER:

Statements (Reasons)

1. \overrightarrow{AD} and \overrightarrow{AE} are secants to the circle. (Given)

2. $m\angle DCE = \frac{1}{2}m\widehat{DE}$, $m\angle ADC = \frac{1}{2}m\widehat{BC}$ (The measure of an inscribed $\angle = \frac{1}{2}$ the measure of its intercepted arc.)

3. $m \angle DCE = m \angle ADC + m \angle A$ (Exterior $\angle s$ Theorem)

4. $\frac{1}{2}m\widehat{DE} = \frac{1}{2}m\widehat{BC} + m\angle A$ (Substitution)

5. $\frac{1}{2}m\widehat{DE} - \frac{1}{2}m\widehat{BC} = m\angle A$ (Subtraction Prop.)

6. $\frac{1}{2} \left(m\widehat{DE} - m\widehat{BC} \right) = m \angle A$ (Distributive Prop.)

31. Case 2

Given: tangent \overrightarrow{FM} and secant \overrightarrow{FL}

Prove: $m \angle F = \frac{1}{2} \left(m \widehat{LH} - m \widehat{GH} \right)$

SOLUTION:

Statements (Reasons)

- 1. \overline{FM} is a tangent to the circle and \overline{FL} is a secant to the circle. (Given)
- 2. $m \angle FLH = \frac{1}{2} m \widehat{HG}$, $m \angle LHM = \frac{1}{2} m \widehat{LH}$ (The meas. of an inscribed $\angle = \frac{1}{2}$ the measure of its intercepted arc.)
- 3. $m\angle LHM = m\angle FLH + m\angle F$ (Exterior $\angle s$ Theorem)
- 4. $\frac{1}{2}m\widehat{LH} = \frac{1}{2}m\widehat{HG} + m\angle F$ (Substitution)
- 5. $\frac{1}{2}m\widehat{LH} \frac{1}{2}m\widehat{HG} = m\angle F$ (Subtraction Prop.)
- 6. $\frac{1}{2} \left(m \widehat{LH} m \widehat{HG} \right) = m \angle F$ (Distributive Prop.)

ANSWER:

Statements (Reasons)

- 1. \overline{FM} is a tangent to the circle and \overline{FL} is a secant to the circle. (Given)
- 2. $m\angle FLH = \frac{1}{2}m\widehat{HG}$, $m\angle LHM = \frac{1}{2}m\widehat{LH}$ (The meas. of an inscribed $\angle = \frac{1}{2}$ the measure of its intercepted arc.)
- 3. $m\angle LHM = m\angle FLH + m\angle F$ (Exterior $\angle s$ Theorem)
- 4. $\frac{1}{2}m\widehat{LH} = \frac{1}{2}m\widehat{HG} + m\angle F$ (Substitution)
- 5. $\frac{1}{2}m\widehat{LH} \frac{1}{2}m\widehat{HG} = m\angle F$ (Subtraction Prop.)
- 6. $\frac{1}{2} \left(m\widehat{LH} m\widehat{HG} \right) = m\angle F$ (Distributive Prop.)

32. Case 3

Given: tangent \overrightarrow{RS} and \overrightarrow{RV}

Prove: $m \angle R = \frac{1}{2} \left(\widehat{mSWT} - \widehat{mST} \right)$

SOLUTION:

Statements (Reasons)

1. \overline{RS} and \overline{RV} are tangents to the circle. (Given)

2. $m \angle STV = \frac{1}{2} m\widehat{SWT}, m \angle RST = \frac{1}{2} m\widehat{ST}$ (The meas. of an secant-tangent $\angle = \frac{1}{2}$ the measure of its intercepted arc.)

3. $m \angle STV = m \angle RST + m \angle R$ (Exterior \angle s Theorem)

4. $\frac{1}{2} \widehat{mSWT} = \frac{1}{2} \widehat{mST} + m \angle R$ (Substitution)

5. $\frac{1}{2} m\widehat{SWT} - \frac{1}{2} m\widehat{ST} = m \angle R$ (Subtraction Prop.)

6. $\frac{1}{2} \left(\widehat{mSWT} - \widehat{mST} \right) = m \angle R$ (Distributive Prop.)

ANSWER:

Statements (Reasons)

1. \overline{RS} and \overline{RV} are tangents to the circle. (Given)

2. $m \angle STV = \frac{1}{2} m\widehat{SWT}, m \angle RST = \frac{1}{2} m\widehat{ST}$ (The meas. of an secant-tangent $\angle = \frac{1}{2}$ the measure of its intercepted arc.)

3. $m \angle STV = m \angle RST + m \angle R$ (Exterior \angle s Theorem)

4. $\frac{1}{2}m\widehat{SWT} = \frac{1}{2}m\widehat{ST} + m\angle R$ (Substitution)

5. $\frac{1}{2} m\widehat{SWT} - \frac{1}{2} m\widehat{ST} = m \angle R$ (Subtraction Prop.)

6. $\frac{1}{2} \left(\widehat{mSWT} - \widehat{mST} \right) = m \angle R$ (Distributive Prop.)

33. **PROOF** Write a paragraph proof of Theorem 10.13.

a. Given: \overrightarrow{AB} is a tangent of \bigcirc \bigcirc . \overrightarrow{AC} is a secant of \bigcirc \bigcirc . $\angle CAE$ is acute.

Prove: $m \angle CAE = \frac{1}{2}m(\text{arc } CA)$

b. Prove that if $\angle CAB$ is obtuse, $m \angle CAB = \frac{1}{2}m(\text{arc }CDA)$

SOLUTION:

- **a.** Proof: By Theorem 10.10, $\overline{OA} \perp \overline{AB}$. So, $\angle FAE$ is a right \angle with measure of 90 and arc FCA is a semicircle with measure of 180. Since $\angle CAE$ is acute, C is in the interior of $\angle FAE$, so by the Angle and Arc Addition Postulates, $m\angle FAE = m\angle FAC + m\angle CAE$ and m(arc FCA) = m(arc FC) + m(arc CA). By substitution, $90 = m\angle FAC + m\angle CAE$ and 180 = m(arc FC) + m(arc CA). So, $90 = \frac{1}{2}m(\text{arc }FC) + \frac{1}{2}m(\text{arc }CA)$ by Division Prop., and $m\angle FAC + m\angle CAE = \frac{1}{2}m(\text{arc }FC) + \frac{1}{2}m(\text{arc }CA)$ by substitution. $m\angle FAC = \frac{1}{2}m(\text{arc }FC)$ since $\angle FAC$ is inscribed, so substitution yields $\frac{1}{2}m(\text{arc }FC) + m\angle CAE = \frac{1}{2}m(\text{arc }FC) + \frac{1}{2}m(\text{arc }CA)$. By Subtraction Prop., $m\angle CAE = \frac{1}{2}m(\text{arc }CA)$.
- **b.** Proof: Using the Angle and Arc Addition Postulates, $m \angle CAB = m \angle CAF + m \angle FAB$ and m(arc CDA) = m(arc CF) + m(arc FDA). Since $\overline{OA} \perp \overline{AB}$ and \overline{FA} is a diameter, $\angle FAB$ is a right angle with a measure of 90 and arc FDA is a semicircle with a measure of 180. By substitution, $m \angle CAB = m \angle CAF + 90$ and m(arc CDA) = m(arc CF) + 180. Since $\angle CAF$ is inscribed, $m \angle CAF = \frac{1}{2}m(\text{arc }CF)$ and by substitution, $m \angle CAB = \frac{1}{2}m(\text{arc }CF) + 90$. Using the Division and Subtraction Properties on the Arc Addition equation yields $\frac{1}{2}m(\text{arc }CDA) \frac{1}{2}m(\text{arc }CF) = 90$. By substituting for 90, $m \angle CAB = \frac{1}{2}m(\text{arc }CF) + \frac{1}{2}m(\text{arc }CDA) \frac{1}{2}m(\text{arc }CF)$. Then by subtraction, $m \angle CAB = \frac{1}{2}m(\text{arc }CDA)$.

ANSWER:

- **a.** Proof: By Theorem 10.10, $\overline{OA} \perp \overline{AB}$. So, $\angle FAE$ is a right \angle with measure of 90 and arc FCA is a semicircle with measure of 180. Since $\angle CAE$ is acute, C is in the interior of $\angle FAE$, so by the Angle and Arc Addition Postulates, $m\angle FAE = m\angle FAC + m\angle CAE$ and m(arc FCA) = m(arc FC) + m(arc CA). By substitution, $90 = m\angle FAC + m\angle CAE$ and 180 = m(arc FC) + m(arc CA). So, $90 = \frac{1}{2}m(\text{arc }FC) + \frac{1}{2}m(\text{arc }CA)$ by Division Prop., and $m\angle FAC + m\angle CAE = \frac{1}{2}m(\text{arc }FC) + \frac{1}{2}m(\text{arc }CA)$ by substitution. $m\angle FAC = \frac{1}{2}m(\text{arc }FC)$ since $\angle FAC$ is inscribed, so substitution yields $\frac{1}{2}m(\text{arc }FC) + m\angle CAE = \frac{1}{2}m(\text{arc }FC) + \frac{1}{2}m(\text{arc }CA)$. By Subtraction Prop., $m\angle CAE = \frac{1}{2}m(\text{arc }CA)$.
- **b.** Proof: Using the Angle and Arc Addition Postulates, $m \angle CAB = m \angle CAF + m \angle FAB$ and m(arc CDA) = m(arc CF) + m(arc FDA). Since $\overline{OA} \perp \overline{AB}$ and \overline{FA} is a diameter, $\angle FAB$ is a right angle with a measure of 90 and arc FDA is a semicircle with a measure of 180. By substitution, $m \angle CAB = m \angle CAF + 90$ and m(arc CDA) = m(arc CF)

+ 180. Since $\angle CAF$ is inscribed, $m\angle CAF = \frac{1}{2}m(\text{arc }CF)$ and by substitution, $m\angle CAB = \frac{1}{2}m(\text{arc }CF) + 90$. Using the Division and Subtraction Properties on the Arc Addition equation yields $\frac{1}{2}m(\text{arc }CDA) - \frac{1}{2}m(\text{arc }CF) = 90$. By substituting for 90, $m\angle CAB = \frac{1}{2}m(\text{arc }CF) + \frac{1}{2}m(\text{arc }CDA) - \frac{1}{2}m(\text{arc }CF)$. By subtraction, $m\angle CAB = \frac{1}{2}m(\text{arc }CDA)$.

34. **OPTICAL ILLUSION** The design shown is an example of optical wallpaper. \overline{BC} is a diameter of $\bigcirc Q$. If $m \angle A$ = 26 and \widehat{mCE} = 67, what is \widehat{mDE} ? Refer to the image on page 748.

SOLUTION:

First, find the measure of arc BD.

$$m \angle A = \frac{1}{2} [m(\operatorname{arc}CE) - m(\operatorname{arc}BD)]$$
 Theorem10.14
 $26 = \frac{1}{2} [67 - m(\operatorname{arc}BD)]$ Substitution
 $52 = 67 - m(\operatorname{arc}BD)$ Multiply each side by 2.
 $m(\operatorname{arc}BD) = 15$ Add $m(\operatorname{arc}BD)$ and subtract 52 from each side.

Since \overline{BC} is a diameter, arc *BDE* is a semicircle and has a measure of 180.

$$m(arc\,CE) + m(arc\,DE) + m(arc\,BD) = m(arc\,BDE)$$
 Arc Addition Postulate
 $67 + m(arc\,DE) + 15 = 180$ Substitution
 $m(arc\,DE) + 82 = 180$ Simplify.
 $m(arc\,DE) = 98$ Subtract 82 from each side.

ANSWER:

- 35. **MULTIPLE REPRESENTATIONS** In this problem, you will explore the relationship between Theorems 10.12 and 10.6.
 - **a. GEOMETRIC** Copy the figure shown. Then draw three successive figures in which the position of point *D* moves closer to point *C*, but points *A*, *B*, and *C* remain fixed.
 - **b. TABULAR** Estimate the measure of \widehat{CD} for each successive circle, recording the measures of \widehat{AB} and \widehat{CD} in a table. Then calculate and record the value of x for each circle.
 - **c. VERBAL** Describe the relationship between \widehat{mAB} and the value of x as \widehat{mCD} approaches zero. What type of angle does $\angle AEB$ become when $\widehat{mCD} = 0$?
 - **d. ANALYTICAL** Write an algebraic proof to show the relationship between Theorems 10.12 and 10.6 described in part c.

SOLUTION:

a. Redraw the circle with points A, B, and C in the same place but place point D closer to C each time. Then draw chords \overline{AC} and \overline{BD} .

b.

	Circle 1	Circle 2	Circle 3
ĈD	25	15	5
ÂB	50	50	50
X	37.5	32.5	27.5

c. As the measure of \widehat{CD} gets closer to 0, the measure of x approaches half of \widehat{mAB} ; $\angle AEB$ becomes an inscribed angle.

d.
$$x = \frac{1}{2}(m\widehat{AB} + m\widehat{CD}); x = \frac{1}{2}(m\widehat{AB} + 0); x = \frac{1}{2}m\widehat{AB}$$

ANSWER:

a.

b.

	Circle 1	Circle 2	Circle 3
ĈD	25	15	5
ÂB	50	50	50
X	37.5	32.5	27.5

c. As the measure of \widehat{CD} gets closer to 0, the measure of x approaches half of \widehat{mAB} ; $\angle AEB$ becomes an inscribed angle.

d.
$$x = \frac{1}{2}(m\widehat{AB} + m\widehat{CD}); x = \frac{1}{2}(m\widehat{AB} + 0); x = \frac{1}{2}m\widehat{AB}$$

36. **WRITING IN MATH** Explain how to find the measure of an angle formed by a secant and a tangent that intersect outside a circle.

SOLUTION:

Find the difference of the two intercepted arcs and divide by 2.

ANSWER:

Find the difference of the two intercepted arcs and divide by 2.

37. **CHALLENGE** The circles below are concentric. What is x?

SOLUTION:

Use the arcs intercepted on the smaller circle to find $m \angle A$.

$$m \angle A = \frac{1}{2}[118 - 54]$$
 Theorem 10.14
= $\frac{1}{2}[64]$ Simplify.
= 32 Multiply.

Use the arcs intercepted on the larger circle and $m \angle A$ to find the value of x.

32 =
$$\frac{1}{2}$$
[79 - x] Theorem 10.14
64 = 79 - x Multiply each side by 2.
 $x = 15$ Add x and subtract 64 from each side.

ANSWER:

38. **REASONS** Isosceles $\triangle ABC$ is inscribed in $\bigcirc D$. What can you conclude about \widehat{mAB} and \widehat{mBC} ? Explain.

SOLUTION:

Sample answer: $\widehat{mAB} = \widehat{mBC}$; $m \angle BAC = m \angle BCA$ because the triangle is isosceles. Since $\angle BAC$ and $\angle BCA$ are inscribed angles, by theorem 10.6, $m(\operatorname{arc} AB) = 2m \angle BCA$ and $m(\operatorname{arc} BC) = 2m \angle BAC$. So, $m(\operatorname{arc} AB) = m(\operatorname{arc} BC)$.

ANSWER:

Sample answer: $\widehat{mAB} = \widehat{mBC}$; $m \angle BAC = m \angle BCA$ because the triangle is isosceles. Since $\angle BAC$ and $\angle BCA$ are inscribed angles, by theorem 10.6, $m(\operatorname{arc} AB) = 2m \angle BCA$ and $m(\operatorname{arc} BC) = 2m \angle BAC$. So, $m(\operatorname{arc} AB) = m(\operatorname{arc} BC)$.

- 39. CCSS ARGUMENTS In the figure, \overline{JK} is a diameter and \overline{GH} is a tangent.
 - **a.** Describe the range of possible values for $m \angle G$. Explain.
 - **b.** If $m \angle G = 34$, find the measures of minor arcs HJ and KH. Explain.

SOLUTION:

- **a.** $m \angle G \le 90$; $m \angle G < 90$ for all values except when $\overrightarrow{JG} \perp \overrightarrow{GH}$ at G, then $m \angle G = 90$.
- **b.** $\widehat{mKH} = 56$; $\widehat{mHJ} = 124$; Because a diameter is involved the intercepted arcs measure (180 x) and x degrees.

Hence solving $\frac{180-x-x}{2} = 34$ leads to the answer.

ANSWER:

- **a.** $m \angle G \le 90$; $m \angle G < 90$ for all values except when $\overrightarrow{JG} \perp \overrightarrow{GH}$ at G, then $m \angle G = 90$.
- **b.** $\widehat{mKH} = 56$; $\widehat{mHJ} = 124$; Because a diameter is involved the intercepted arcs measure (180 x) and x degrees.

Hence solving $\frac{180-x-x}{2} = 34$ leads to the answer.

40. **OPEN ENDED** Draw a circle and two tangents that intersect outside the circle. Use a protractor to measure the angle that is formed. Find the measures of the minor and major arcs formed. Explain your reasoning.

SOLUTION:

Sample answer:

By Theorem 10.13, $m \angle 1 = \frac{1}{2}(x - y)$. So, $50^{\circ} = \frac{1}{2}[(360 - x) - x]$. Therefore, x (minor arc) = 130, and y (major arc) = $360^{\circ} - 130^{\circ}$ or 230° .

ANSWER:

Sample answer:

By Theorem 10.13, $m \angle 1 = \frac{1}{2}(x - y)$. So, $50 = \frac{1}{2}[(360 - x) - x]$. Therefore, x (minor arc) = 130, and y (major arc) = 360 - 130 or 230.

41. WRITING IN MATH A circle is inscribed within $\triangle PQR$. If $m \angle P = 50$ and $m \angle Q = 60$, describe how to find the measures of the three minor arcs formed by the points of tangency.

SOLUTION:

Sample answer: Use Theorem 10.14 to find each minor arc.

$$m \angle P = \frac{1}{2}[(360 - x) - x]$$
 Theorem 10.14

$$50 = \frac{1}{2}[360 - 2x]$$
 Substitute and simplify.

$$50 = 180 - x$$
 Multiply.

$$x = 130$$
 Add x and subtract 50 from each side.

$$50 = 180 - x$$
 Multiply.
 $x = 130$ Add x and subtraction $m \angle Q = \frac{1}{2}[(360 - y) - y]$ Theorem 10.14

$$60 = \frac{1}{2}[360 - 2y]$$
 Substitute and simplify.

$$60 = 180 - y$$
 Multiply.

$$y = 120$$
 Add y and subtract 60 from each side.

The sum of the angles of a triangle is 180, so $m \angle R = 180 - (50 + 60)$ or 70.

$$m \angle R = \frac{1}{2}[(360 - z) - z]$$
 Theorem 10.14

$$70 = \frac{1}{2}[360 - 2z]$$
 Substitute and simplify.

$$70 = 180 - z$$
 Multiply.

$$z = 110$$
 Add z and subtract 70 from each side.

Therefore, the measures of the three minor arcs are 130, 120, and 110.

ANSWER:

Sample answer: Using Theorem 10.14, $60^{\circ} = 1/2((360 - x) - x)$ or 120° ; repeat for 50° to get 130° . The third arc can be found by adding 50° and 60° and subtracting from 360 to get 110°

42. What is the value of x if $\widehat{mNR} = 62$ and $\widehat{mNP} = 108$?

A 23°

B 31°

C 64°

D 128°

SOLUTION:

By Theorem 10.14, $x = \frac{1}{2} \left(m \widehat{PR} - m \widehat{NR} \right)$.

Substitute.

$$x = \frac{1}{2} \left(\left(360 - (62 + 108) \right) - 62 \right)$$

Simplify.

$$x = \frac{1}{2} (360 - (62 + 108) - 62)$$

$$= \frac{1}{2} (360 - 170 - 62)$$

$$= \frac{1}{2} (360 - 170 - 62)$$

$$= \frac{1}{2} (128)$$

$$= 64$$

So, the correct choice is C.

ANSWER:

C

43. **ALGEBRA** Points A(-4, 8) and B(6, 2) are both on circle C, and \overline{AB} is a diameter. What are the coordinates of C?

F (2, 10)

G(10, -6)

H(5, -3)

J (1, 5)

SOLUTION:

Here, C is the midpoint of \overline{AB} .

Use the midpoint formula, $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$, to find the coordinates of C.

$$\left(\frac{-4+6}{2}, \frac{8+2}{2}\right) = \left(\frac{2}{2}, \frac{10}{2}\right)$$

= (1,5)

So, the correct choice is J.

ANSWER:

J

44. **SHORT RESPONSE** If $m \angle AED = 95$ and $\widehat{mAD} = 120$, what is $m \angle BAC$?

SOLUTION:

Since
$$\widehat{mAD} = 120$$
, $m \angle ABD = \frac{1}{2}(120) = 60$.

We know that vertical angles are congruent.

So, $m \angle BEC = 95$.

Since $m \angle BEC = m \angle AED = 95$, $m \angle BEA = m \angle CED = 85$.

We know that the sum of the measures of all interior angles of a triangle is 180.

 $m\angle BEA + m\angle BAE + m\angle ABE = 180$

Substitute.

 $85 + m \angle BAE + 60 = 180$

$$m \angle BAE = 35$$

Since $m \angle BAE = 35$, $m \angle BAC = 35$.

ANSWER:

45. **SAT/ACT** If the circumference of the circle below is 16π , what is the total area of the shaded regions?

A 64π units²

B 32π units²

C 12π units²

 $\mathbf{D} 8\pi \text{ units}^2$

D 2π units²

SOLUTION:

First, use the circumference to find the radius of the circle.

 $C = 2\pi r$ Circumference Formula

 $16\pi = 2\pi r$ Substitution

 $\frac{16\pi}{2\pi} = r$ Divide each side by 2π .

r = 8 Simplify.

The shaded regions of the circle comprise half of the circle, so its area is half the area of the circle.

$$A_{\text{shaded}} = \frac{1}{2}\pi r^2$$
 Area Formula
 $= \frac{1}{2}[\pi(8^2)]$ Substitution
 $= \frac{1}{2}[64\pi]$ Simplify.
 $= 32\pi$ Multiply.

The area of the shaded regions is 32π .

So, the correct choice is B.

ANSWER:

В

Find x. Assume that segments that appear to be tangent are tangent.

46.

SOLUTION:

By theorem 10.10, $JK \perp KL$. So, ΔJKL is a right triangle. Use the Pythagorean Theorem.

$$JK^2 + KL^2 = JL^2$$

Substitute.

$$x^2 + 4^2 = 5^2$$

$$25-16=x^2$$

$$9 = x^2$$

$$\Rightarrow x = 3$$

ANSWER:

3

47.

SOLUTION:

If two segments from the same exterior point are tangent to a circle, then they are congruent.

$$3x - 7 = 2x + 1$$

$$x = 8$$

ANSWER:

48.

SOLUTION:

Use Theorem 10.10 and the Pythagorean Theorem.

$$5^2 + 15^2 = x^2$$

Solve for *x*.

$$5^2 + 15^2 = x^2$$

$$25 + 225 = x^2$$

$$250 = x^2$$

$$\Rightarrow x = 5\sqrt{10}$$

ANSWER:

 $5\sqrt{10}$

49. **PROOF** Write a two-column proof.

Given: \widehat{MHT} is a semicircle; $\overline{RH} \perp \overline{TM}$.

Prove:
$$\frac{TR}{RH} = \frac{TH}{HM}$$

SOLUTION:

Given: \widehat{MHT} is a semicircle.

$$\overline{RH} \perp \overline{TM}$$
.

Prove:
$$\frac{TR}{RH} = \frac{TH}{HM}$$

Proof:

Statements (Reasons)

- 1. MHT is a semicircle; $\overline{RH} \perp \overline{TM}$. (Given)
- 2. ∠THM is a right angle. (If an inscribed angle intercepts a semicircle, the angle is a right angle.)
- 3. $\angle TRH$ is a right angle (Def. of \perp lines)
- 4. $\angle THM \cong \angle TRH$ (All rt. angles are \cong .)
- 5. $\angle T \cong \angle T$ (Reflexive Prop.)
- 6. $\Delta TRH \sim \Delta THM$ (AA Sim.)

7.
$$\frac{TR}{RH} = \frac{TH}{HM}$$
 (Def. of $\sim \Delta s$)

ANSWER:

Given: \widehat{MHT} is a semicircle.

 $\overline{RH} \perp \overline{TM}$.

Prove: $\frac{TR}{RH} = \frac{TH}{HM}$

Proof:

Statements (Reasons)

1. *MHT* is a semicircle; $\overline{RH} \perp \overline{TM}$. (Given)

2. *ZTHM* is a right angle. (If an inscribed angle intercepts a semicircle, the angle is a right angle.)

3. $\angle TRH$ is a right angle (Def. of \perp lines)

4. $\angle THM \cong \angle TRH$ (All rt. angles are \cong .)

5. $\angle T \cong \angle T$ (Reflexive Prop.)

6. $\Delta TRH \sim \Delta THM$ (AA Sim.)

7. $\frac{TR}{RH} = \frac{TH}{HM}$ (Def. of $\sim \Delta s$)

50. **REMODELING** The diagram at the right shows the floor plan of Trent's kitchen. Each square on the diagram represents a 3-foot by 3-foot area. While remodeling his kitchen, Trent moved his refrigerator from square A to square B. Describe one possible combination of transformations that could be used to make this move.

SOLUTION:

The move is a translation 15 feet out from the wall and 21 feet to the left, then a rotation of 90° counterclockwise.

ANSWER:

The move is a translation 15 feet out from the wall and 21 feet to the left, then a rotation of 90° counterclockwise.

COORDINATE GEOMETRY Find the measure of each angle to the nearest tenth of a degree by using the Distance Formula and an inverse trigonometric ratio.

51. $\angle C$ in triangle BCD with vertices B(-1, -5), C(-6, -5), and D(-1, 2)

SOLUTION:

Use the Distance Formula to find the length of each side.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$BC = \sqrt{(-6 - (-1))^2 + (-5 - (-5))^2} = \sqrt{25} = 5$$

$$CD = \sqrt{(-1 - (-6))^2 + (2 - (-5))^2} = \sqrt{74}$$

$$DB = \sqrt{(-1 - (-1))^2 + (2 - (-5))^2} = \sqrt{49} = 7$$
Since $5^2 + 7^2 = \sqrt{74}^2$, triangle BCD is a right triangle.

So, CD is the length of the hypotenuse and BC is the length of the leg adjacent to $\angle C$. Write an equation using the cosine ratio.

$$\cos C = \frac{BC}{CD} = \frac{5}{\sqrt{74}}$$
If $\cos C = \frac{5}{\sqrt{74}}$, then $C = \cos^{-1}\left(\frac{5}{\sqrt{74}}\right)$.

Use a calculator.

ANSWER:

54.5

52. $\angle X$ in right triangle XYZ with vertices X(2, 2), Y(2, -2), and Z(7, -2)

SOLUTION:

Use the Distance Formula to find the length of each side.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$XY = \sqrt{(2 - 2)^2 + (-2 - 2)^2} = \sqrt{16} = 4$$

$$YZ = \sqrt{(7 - 2)^2 + (-2 - (-2))^2} = \sqrt{25} = 5$$

$$ZX = \sqrt{(7 - 2)^2 + (-2 - 2)^2} = \sqrt{41}$$

In right triangle XYZ, ZX is the length of the hypotenuse and YZ is the length of the leg opposite $\angle X$. Write an equation using the sine ratio.

$$\sin X = \frac{YZ}{ZX} = \frac{5}{\sqrt{41}}$$

If
$$\sin X = \frac{5}{\sqrt{41}}$$
, then $X = \sin^{-1} \left(\frac{5}{\sqrt{41}} \right)$.

Use a calculator.

$$m \angle X \approx 51.3^{\circ}$$

ANSWER:

51.3

Solve each equation.

53.
$$x^2 + 13x = -36$$

SOLUTION:

$$x^2 + 13x = -36$$
 Original equation

$$x^2 + 13x + 36 = 0$$
 Add 36 to each side.

$$(x+9)(x+4) = 0$$
 Factor.

$$x = -9 \text{ or } -4$$
 Zero Product Property

Therefore, the solution is -9, -4.

ANSWER:

$$-4, -9$$

$$54. x^2 - 6x = -9$$

SOLUTION:

$$x^2 - 6x = -9$$
 Original equation

$$x^2 - 6x + 9 = 0$$
 Add 9 to each side.

$$(x-3)(x-3) = 0 Factor.$$

$$x = 3$$
 Zero Product Property

Therefore, the solution is 3.

ANSWER:

3

$$55. \ 3x^2 + 15x = 0$$

SOLUTION:

$$3x^2 + 15x = 0$$
 Original equation

$$3x(x+5) = 0$$
 Factor.

$$x = 0$$
 or -5 Zero Product Property

Therefore, the solution is -5, 0.

ANSWER:

$$0, -5$$

$$56.\ 28 = x^2 + 3x$$

SOLUTION:

$$28 = x^2 + 3x$$

Original equation

$$0 = x^2 + 3x - 28$$
 Subtract 28 to each side.

$$0 = (x+7)(x-4)$$
 Factor.

$$x = -7 \text{ or } 4$$

x = -7 or 4 Zero Product Property

Therefore, the solution is -7, 4.

ANSWER:

$$-7, 4$$

$$57. x^2 + 12x + 36 = 0$$

SOLUTION:

$$x^2 + 12x + 36 = 0$$
 Original equation

$$(x+6)(x+6) = 0 Factor.$$

$$x = -6$$
 Zero Product Property

Therefore, the solution is -6.

ANSWER:

58.
$$x^2 + 5x = -\frac{25}{4}$$

SOLUTION:

$$x^2 + 5x = -\frac{25}{4}$$
 Original equation

$$x^2 + 5x + \frac{25}{4} = 0$$
 Add $\frac{25}{4}$ to each side.

$$(x+\frac{5}{2})(x+\frac{5}{2}) = 0$$
 Factor.

$$x = -\frac{5}{2}$$
 Zero Product Property

Therefore, the solution is $-\frac{5}{2}$.

ANSWER:

$$-\frac{5}{2}$$